Instruction Manual & User's Guide

 $10kV\sim38kV$ Pole mounted SF₆-insulated Automatic Vacuum Recloser with Microprocessor based controller integrated with Remote Terminal Unit(RTU)

JIN KWANG E&C CORPORATION

705, Buk-ri, Namsa-myeon, Yongin, Kyunggi-do, Korea

Tel. +82-31-333-3444 Fax. +82-31-332-5300

CONTENTS

PART I:

SF6 AUTOMATIC VACUUM RECLOSER BODY

1. 8	SAFETY INFORMATION	5
	1.1 Safety for Life	5
	1.2 Safety Information	5
	1.3 Safety Instruction	5
2. (GENERAL INFORMATION	6
	2.1 Instruction	6
	2.2 Read this Manual First	6
	2.3 Additional Information	6
	2.4 Applied Standards	6
	2.5 Quality Standards	6
	2.6 Acceptance and Initial Inspection	6
	2.7 Handling and Storage	6
	2.8 Description	6
3. F	RATING & SPECIFICATIONS	8
4. (CONSTRUCTION	9
	4.1 Tank	. 10
	4.2 Switching module	. 10
	4.2.2 Vacuum interrupters	11
	4.2.3 Operation of switching modules	11
	4.3 Current transformers	. 13
	4.4 Bushings	. 13
	4.5 Solderless Grounding Terminal	. 13
	4.6 Grounding connector	. 13
	4.7 Manual Operating and Lock Handle	. 13
	4.8 Safety locking device	. 14
	4.9 Pressure release device	. 14
	4.10 Counter	. 14
	4.11 Position Indicator(ON / OFF)	. 14
5. I	NSTALLATION PROCEDURE	. 15
	5.1 General	. 15
	5.2 Checking items prior to installation	. 15

5.3 Installation procedure	16
5.3.1 Mount the recloser	16
5.3.2 Ground the recloser	17
5.3.3 Install the control	18
5.3.4 Ground the control	18
5.3.5 Make the high-voltage line connections	18
5.4 After installation, checking items	18
5.5 Place the recloser in Service	19
5.6 Remove the recloser from Service	19
6. RECLOER OPERATION	20
6.1 Closing Operation	20
6.2 Opening Operation	20
6.3 Lock Operation	20
7. MAINTENANCE	21
7.1 General	21
7.3 Check the operation of low pressure indicator	21
7.4 Check the recloser visually	21
PART II : MICROPROCESSOR BASED CONTROLLER INTEGRATE	D WITH RTU
1. OVERVIEW	21
1.1 Protection of Distribution Lines	21
1.2 Functions of Automatic Circuit Recloser	22
1.3 Main Features of FTU-R100	22
2. TECHNICAL DATA	24
2.1 Environmental Conditions	24
2.2 Inputs / Outputs	24
2.3 Measurements	25
2.4 Communications	26
2.5 Display & Operation panel	27
2.6 Digital Processor	27
2.7 Settings	28
2.7.1 Fault Detection	28

2.7.3 Ph	ase Sync. Check	30
2.7.4 Un	der-frequency detection	30
2.7.5 Set	tting group select	30
2.7.6 I/O	configuration	30
2.7.7 Co	mmunication configuration	31
2.7.8 DN	P3.0 protocol configuration	31
2.7.9 IEC	C60870-5-101 protocol configuration	31
2.8 Recording	J	32
2.8.1 Eve	ent recording	32
2.8.2 Wa	veform recording	32
2.8.3 Co	unters	32
2.9 Maintenar	nce software	32
3. CONSTRUCTIO	N AND EXTERNAL CONNECTION	33
3.1 Appearan	ce & Dimension	33
3.2 Connector	rs of FTU	35
4. FRONT PANEL	OPERATIONS	36
4.1 Button & L	_ED Description	36
4.2 LCD Mani	pulation	39
4.2.1 LC	D Menus	40
4.3 Setting &	Operation Tool (FTU_SET)	47
5. PROTECTION F	FUNCTIONS	62
5.1 Auto-Recl	osing Sequence	62
5.2 HCT (High	n Current Trip)	63
5.3 Cold Load	l Pickup	63
5.4 Inrush Re	straints	63
5.5 SEF (Sen	sitive Earth Fault) Detection	63
5.6 Sequence	Coordination	64
6. TC CURVE SET	TING	65
6.1 Example of	of TC Curve Editing	66
Appendix 1.	TC (Time-Current) Characteristic Curves	68
Appendix 2.	DNP V3.0 Protocol Point Index	81
Appendix 3.	DNP V3.0 Device Profile	82
Appendix 4.	Dimensions	113
Appendix 5.	FTU Inspection Checklist	114
Appendix 6.	IEC60870-5-101 Interoperability	121
Appendix 7.	IEC60870-5-101 Protocol Point Index	131

1. SAFETY INFORMATION

1.1 Safety for Life

Jinkwang's products meet or exceed all applicable industry standards relating to product safety. We actively promote safe practices in the use and maintenance of our products through our technical information, instructional training programs, and the continuous efforts of all Jinkwang employees involved in product design, manufacture, marketing and service

1.2 Safety Information

The instructions in this manual are not intended as a substitute for proper training or adequate experience in the safe operation of the recloser described.

Only authorized technicians who are familiar with this recloser should install, operate and service it.

Following is important safety information. For safe installation and operation of the recloser, be sure to read carefully and understand fully followings. Additional statements, related to specific matters and procedures, can be observed throughout this manual.

This manual may contain four types of hazard statements:

Danger : Indicates an imminently hazardous situation which, if not avoided, will result in serious injury.

Warning: Indicates a potentially hazardous situation which, if not avoided, could result in serious injury.

Caution: Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate

injury or equipment damage.

1.3 Safety Instruction

Following are general cautions and warning statements that apply to this recloser.

Danger:

1. Follow all locally approved safety procedures when working around high voltage lines and equipment. Contact with hazardous voltage will cause severe personal injury.

Warning:

- 1. This equipment is not intended to protect human life. Follow all locally approved procedures and safety practices when installing or operating this equipment. Failure to comply can result in severe personal injury and equipment damage.
- 2. The recloser must be selected for the intended application. It must be installed and serviced by proper personal who have been trained and understand proper safety procedures. This instructions are written for such personal and are not a substitute for adequate training and experience in safety procedures. Failure to properly select, install, or maintain this recloser can result in severe personal injury.
- 3. Before installing, operating, maintaining or testing this recloser, carefully read and understand the contents of this manual. Improper operation, handling or maintenance may result in severe personal injury, and damage to the recloser.

2. GENERAL INFORMATION

2.1 Instruction

This manual provides installation, operation and maintenance instructions for the JK-REC Type electronically controlled recloser.

Before installing and operating this recloser, carefully read and understand the contents of this manual.

2.2 Read this Manual First

Read and understand the contents of this manual and follow all locally approved procedures and safety practices before installing and operating this recloser.

2.3 Additional Information

This manual cannot cover all details or variations in the recloser, procedures or process described, nor provides directions for meeting every possible contingency during installation, operation or maintenance. When additional information is desired to satisfy a problem not covered sufficiently for the user's purpose, please contact your Jin Kwang sales representative.

2.4 Applied Standards

The recloser is designed, manufactured and tested in accordance with ANSI C37.60, ANSI C37.71, ANSI C37.73, ANSI C37.85, IEC 60255-5, IEEE C62.41(1991), ANSI/IEEE C37.90.1(1989), IEEE C37.90.2(1995).

2.5 Quality Standards

The recloser shall be manufactured according to ISO9001(1994) quality control system.

2.6 Acceptance and Initial Inspection

The recloser is completely assembled, tested, and inspected at the factory. It is good condition when accepted by the carrier for shipment. Upon receipt, inspect the shipping container for signs for damage. Unpack the recloser and inspect it thoroughly for damage incurred during shipment. If damage is discovered, file a claim with carrier immediately.

2.7 Handling and Storage

Be careful during handling and storage of the recloser to minimize the possibility of damage. In particular, protect the porcelain bushing in handling.

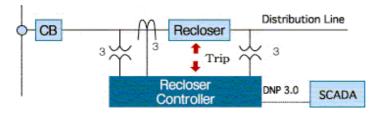
Only use the lifting lug when lifting the recloser. If the recloser is to be stored for any length of time prior to installation, provide a clean, dry storage area.

2.8 Description

New demands for managing distribution systems call for control devices inherently reliable and intelligent. Customers require a built-in capability for data gathering and communication, along with an extremely low maintenance product.

The Jinkwang electronically controlled, three phase automatic recloser (hereinafter referred to as "the recloser") provides reliable and economical over-current protection for distribution circuit, ranging from 15 through 38kV.

The recloser senses line current and automatically interrupts the phase of the distribution circuit to which it is

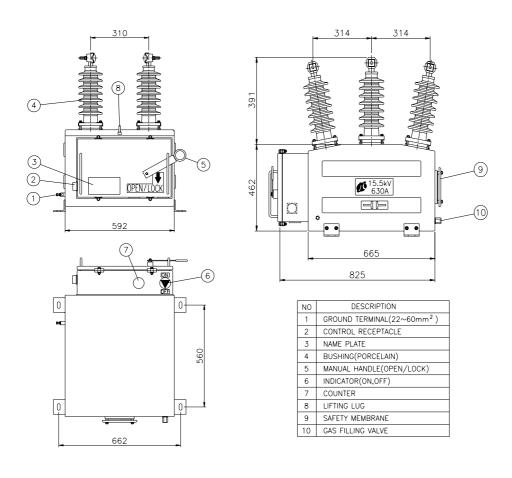

connected when line current exceeds the minimum trip level. Next, it automatically recloses to restore ser-vice

and monitors the line to determine if the fault has been cleared. If the fault is permanent, the recloser sequences to lockout after one, two, three, or four preset trip operations

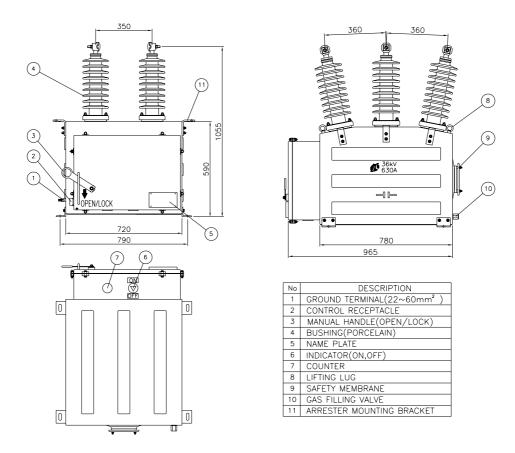
Once the recloser sequences to lockout, the recloser must be manually reset to restore service. Should the fault clear before lockout, the recloser will reset automatically for another sequence of operations. The recloser can also be set for non-reclosing operation (lock out after the first trip operation) The recloser can be remotely set for non-reclosing operation via the remote non-reclosing feature. The trip operations of the recloser can be all fast, all delayed, or any combination of fast operations and delayed operations up to a maximum total of four. Fast operations clear temporary faults before branch line fuses are weakened. Delayed operations allow time for fuses or other downline protective devices to clear to limit permanent faults to the smallest section of line.

The Jinkwang type JK-REC recloser has a characteristic as followings.

- 1) The recloser meets actively in distribution line protection coordination that change variously by control technology that use microprocessor, and are being operated locally or remotely.
- 2) Communication protocols to DAS make the automated protection coordination possible.
- 3) The control has a total of 48 built-in T-C curves, and a T-C curve, which has a time multiplier and a minimum response time applied to the fundamental curve and a high current lockout characteristic, allows programming via keypad or RS232 communication port on the front of control panel.
- 4) Fault recording for analysis can be backed up using LCD display or handheld controller applying gradually fault recording that need in the maintenance on the distribution lines.
- 5) All operating parameters and settings are easily programmable via handheld controller or PC using RS-232 port on the front panel.
- 6) The control is equipped with the function of sequence coordination to prevent unnecessary operation of the upstream reclosers when two or more reclosers are being operated in series.


3. RATING & SPECIFICATIONS

No.	Description	Unit	Specifications		
1	Туре		JK-REC-11	JK-REC-22	JK-REC-33
2	Insulation		SF6		
3	Ratings	i	1		
	Maximum System Voltage Rated Voltage Rated Current Rated Frequency Mechanical Operation(Min.) Rated Gas Pressure at 20°C	kV kV A Hz C-O kg/cm ² .G	15.5 15 630 50/60 10,000 0.5	27 22 630 50/60 10,000 0.5	33 38 630/800 50/60 10,000 0.5
4	Breaking Capacity	1			
	Rated symmetrical interrupting current Short Time Withstand Current(1sec) Making Current(peak) Cable Charging Transformer Magnetizing	A kA kA A	12.5/16 12.5/16 32.5/40 5 22	12.5/16 12.5/16 32.5/40 5 22	12.5/16 12.5/16 32.5/40 5 40
5	Impulse Insulation Level(1.2 × 50μs)				1
	Phase to Earth Across Interrupter	kV kV	110 110	150 150	170 170
6	Power Frequency Insulation Level, dry				
	Phase to Earth Across Interrupter	kV kV	50	60	70
7	Power Supply				
	Operation Control Circuit	V	AC120(AC127V or AC220) DC12(13.8) or DC 24		
8	Environmental				
	Ambient Temperature Humidity	°C %	-30 ~ +50 0 ~ 100		
9	Net Weight(Switch Body/ Control Cabinet)	kg	195/60 300/60		


4. CONSTRUCTION

The recloser shall consist of a mechanism housing including magnetic actuator and vacuum interrupter, and controller. The vacuum interrupter provides greatly enhanced long contact life.

The vacuum interrupters are installed into tank that is made of stainless steel. The lightweight and portable gas insulation effectively reduces installation costs.

(15/24 kV Recloser schematic diagram)

(33 kV Recloser schematic diagram)

4.1 Tank

The tank of the recloser is fabricated from cold rolled steel and plate. The material used is 304L stainless steel (SF6 Gas insulated type only) and the design thickness is a minimum 3^{mm}.

4.2 Switching module

In contrast to the majority of conventional circuit breakers, this patented design incorporates three independent magnetic actuators: one per pole. This minimizes the number of moving parts, all of which are symmetrical about the central synchronization of the poles operation.

The vacuum interrupter and the magnetic actuator are located at opposite ends of a hollow support insulator. The actuator armature is rigidly coupled to the vacuum interrupter moving contact by a linear drive insulator within the support insulator. This provides direct linear movement in both directions and avoids the use of rotating shafts, bearings and bell cranks.

The result is a maintenance free switch module with a long trouble free mechanical life.

The actuators are situated inside the frame. A synchronizing shaft connects the three poles and performs three functions:

- synchronization of the poles operation
- control of the auxiliary switches
- link-motion drive of mechanical interlocks.

4.2.1 Magnetic actuator

The actuator is held in its two end positions without the use of mechanical latches.

- in the OPEN position the armature is held by the opening spring.
- in the CLOSED position the armature is held by magnetic flux produced by a ring permanent magnet.

This actuator has only one coil. To close and trip the actuator it is necessary to inject current into the coil in different directions.

4.2.2 Vacuum interrupters

As soon as the vacuum interrupter contacts open, the interrupting current initiates a so-called "vacuum arc" that burns essentially in plasma originating from evaporated contact material.

The current continues to flow through this plasma until a current zero. At this moment the arc is extinguished and transient recovery voltage appears across the open gap.

If the contact surface is locally overheated it produces a lot of vapor, resulting in the deterioration of the vacuum followed by electrical breakdown. To avoid this, effective control of the vacuum arc is necessary.

The most effective way to achieve this goal is to apply an axial magnetic field produced by the interrupting current itself. This method is implemented in vacuum interrupters developed.

Several major benefits result from this design:

- High interrupting capacity
- Very compact dimensions
- Low chopping current (45 amps) This limits inductive switching overvoltage to safe values.
- Axial magnetic field minimizes contact erosion and ensures a very long and reliable life.

4.2.3 Operation of switching modules

Closing

- In the OPEN position the vacuum interrupter contacts are held open by the force of the opening spring in the actuator acting through the drive insulator.
- To close the vacuum interrupter contacts a current pulse, derived from the closing capacitor in the control module, is injected into the actuator coil.
- The current in the coil produces a magnetic flux in the gap between the upper yoke and the actuator armature.
- Rising coil current increases the magnetic flux and the electromagnetic attraction between yoke and armature increases to overcome the restraining force of the opening spring. (Line1)
- The armature, drive insulator and moving contact start to move.
- As the armature moves towards the upper yoke the magnetic air gap decreases and consequently the magnetic attraction force increases. This increasing force accelerates the armature, drive insulator and moving contact to a closing speed of 1 m/s. This optimum speed ensures a complete absence of contact bounce and reduces the probability of pre-strikes of the vacuum gap before the contacts close. (Line 2)
- The accelerating armature also generates a back emf in the coil and reduces the coil current (Line 1-2)

- At contact close (Line 2) the moving contact stops but the armature travel continues for 2mm under rapid deceleration caused by compressing the contact pressure spring.
- At the limit of its travel the armature latches magnetically to the upper yoke. (Line 2a) The moving armature induced back emf collapses and the coil current again increases (Line 2a-3) saturating the ring magnet.

This saturation increases the power of the ring permanent magnet to a level that generates flux to hold the armature in the CLOSED position after the coil current has been cut off by an auxiliary switch. (Line 3) Testing has proved that this flux is sufficient to hold the actuator CLOSED even under vibration and impact conditions.

- The travel of the armature also compresses the opening spring in preparation for the next opening operation.
- The synchronizing shaft is also driven through 44° of rotation during the closing operation and provides position indication, auxiliary switch operation and mechanical interlocking actions.

Opening

- To open the interrupter a current of opposite polarity, derived from the opening capacitor in the control module, is passed through the coil for 1520 milliseconds. (Line 4-5)
- This current partially demagnetizes the ring magnet and reduces the magnetic holding force on the armature.
- Opposing forces from the charged opening spring and the contact pressure spring cause the armature to release and accelerate rapidly. After 2 mm of free travel it engages with the drive insulator and thus the moving contact.
- The peak force produced by the armature at this point exceeds 2000 N which ensures easy breaking of any micro-welds at the contact surfaces which can appear due to short circuit current action.
- The moving contact accelerates rapidly ensuring a high interrupting capacity. (Line 5)
- At full travel (Line 6) the armature, drive insulator, moving contact assembly is again held open by the opening spring force.
- The synchronizing shaft is also driven through 44° of rotation during the opening operation and provides position indication, auxiliary switch operation and mechanical interlocking actions.

Manual closing

Closing can only be carried out through the control module. If the normal substation supply to the control module is de-energized it may be operated using a portable low voltage source through a special emergency power supply input.

Manual opening

The module may be manually opened.

By rotating the synchronizing shaft a force exceeding the magnetic attraction forces of the ring magnet is applied to the armature, which then starts to move.

As the air-gap increases the opening spring and contact pressure spring over come any magnetic holding force and the interrupter opens.

Auxiliary switches

All switching modules are equipped with thirteen auxiliary switches, six normally open (NO) and seven normally closed (NC). Auxiliary switches are operated by cam that is fitted on the synchronizing shaft. One NC auxiliary switch is used for interconnection with the control module. All others are available for external use

Auxiliary switches ratings are shown in the table below.

Parameters	Value
Туре	VANCT8AC1
Rated Current	
at 250 V AC	
Active load	5 A
Inductive load	2 A
at 30 V DC	
Active load	5 A
Inductive load	3 A
at 125 V DC	
Active load	0.5 A
Inductive load	0.03 A

4.3 Current transformers

The reclosers have a 1000:1 ratio current-sensing transformer. Current transformers shall be mounted inside the recloser with secondary pre-wired to the controller prior to shipment. The recloser shall include 3 CT's, 1 per phase, with sufficient accuracy to operate the controls and designed functions within tolerances $\pm 1\%$ at rated current. A solid-state CT protector circuit, inside the recloser tank, ahead of the cable disconnect, is connected to the current transformer

4.4 Bushings

The bushings are constructed of high quality white porcelain and resistant to moisture, external shock, and thermo-cycling. The bushings also provide leakage resistance and the high dielectric strength required for operation of the recloser in pollution contaminated environments.

4.5 Solderless Grounding Terminal

The solderless clamp type ground terminal connector terminal connector can be specified with eye bolt terminal for connecting a 38mm² ~200mm² connector.

4.6 Grounding connector

The ground connector is provided complete with stainless steel bolt, nut and spring washer for connecting a $22\text{mm}^2 \sim 60\text{mm}^2$ steel ground connector.

4.7 Manual Operating and Lock Handle

The manual operating and lock handle is mounted on the side of main body and is operated by hot stick to enable to be manually opened and lockout.

If you operate the recloser with electric control, the lock handle should be manually returned by hot stick and placed at normal position.

4.8 Safety locking device

The recloser utilizes gas as the insulation medium. Normal gas pressure at the time of manufacture is $0.5 \, \text{kg.f/cm}^2$.G. The safety locking device prevents operation of the recloser, electrically from the local control panel and remote position during low gas pressure condition(i.e. when internal gas pressure drops to $0.1 \sim 0.2 \, \text{kg.f/cm}^2$.G), by locking the recloser in its current state.

4.9 Pressure release device

The recloser has a pressure release device (or safety membrane) to release the pressure inside of the recloser when internal pressure rise to $1.0\sim2.0$ kg f/cm². G due to an abnormal condition.

The pressure release device is located on the opposite side to the manual operating and lock handle. Discharge is vented away from the direction of the operator.

4.10 Counter

The five-digit mechanical operations counter, which records all trip operations, is located at the bottom of the mechanism box.

4.11 Position Indicator(ON / OFF)

Position indicator flag is coupled to the recloser mechanism to show the position of the main contacts. When the flag displays Green color , the main contacts are open; When the flag displays Red color, the main contacts are closed.

4.12 Gas Filling Valve

This Valve is mounted on the side of the recloser tank and "CARE" must be paid not to be opened with protection cap for preventing the gas leakage on the filling valve.

5. INSTALLATION PROCEDURE

Warning

- 1. Always use a hot-stick when working with this recloser. Failure to do so could result in contact with high voltage, which will cause severe personal injury.
- 2. Solidly ground all equipment. Failure to comply could result in severe personal injury or equipment damage.

Caution

- Follow all locally approved safety practices when lifting and mounting the recloser. Use the lifting lugs
 provided. Lift the recloser unit smoothly and do not allow it to shift. Improper lifting can result in it's
 damage.
- 2. Do not connect this control to an energized recloser until all control settings have been properly programmed and verified. Refer to the programming information for this control. Failure to comply can result in control and recloser misoperation, equipment damage, and personal injury.
- 3. Bushings have sharp edges. Wear protective gloves when handling the unit. Failure to do so can results in cuts and abrasions.
- 4. Do not adjust or rotate bushing terminals. The bushing terminals are factory-calibrated to meet the continuous current requirement of the recloser. Adjusting or rotating the bushing terminals can damage the encapsulated interrupter resulting in equipment damage or personal injury.

5.1 General

All reclosers are carefully tested and adjusted at the factory to operate according to published data. Well-equipped test facilities, detailed testing procedures, and thoroughly trained personnel assure accurately calibrated equipment. Each recloser leaves the factory ready for installation.

- 5.2 Checking items prior to installation
- 1) Check bushing's crack and high voltage line connection(bushing terminal).,
- 2) Check ratings on the nameplate.

 Making sure the ratings and settings on the recloser nameplate are correct for the planned installation.
- 3) Check operation of the switch.

 Connect control and recloser using the control cable. Connect the control battery Perform several closing/opening pushing close/open buttons and confirm recloser operation via position indicator. The five-digit operations counter should count one operation.
- 4) Check it thoroughly for damage incurred during storage.

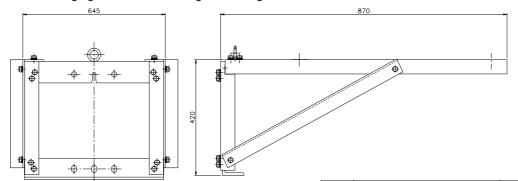
 Perform high-potential withstand tests. Prior to installing the recloser, perform high potential withstand tests.

 This test will help discover any shipping damage affecting the dielectric condition of the recloser or the vacuum integrity of the interrupter.
- 5) Low Gas Pressure(SF6 Gas insulated type only)
 This recloser is filled with 0.5kg.f/cm².G. A low pressure LED on the control panel is illuminates when internal gas pressure drops to 0.1~0.2kg.f/cm².G. Make sure a low pressure LED to the connection condition of the main body and control cabinet
- 6) Make sure a flash of all lamp status indicators to perform a front-panel lamp test in the control cabinet.
- 7) Make sure a mounting condition of the control cabinet's components such as a batteries, power transformer for power supply, etc.

8) Program the control.

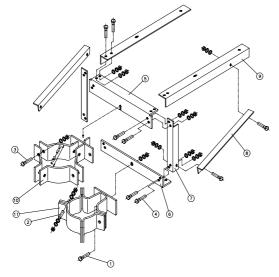
FTU-R100 controls are carefully tested at the factory, shipped and ready for operation. Inspect the control and make sure that all TCC program settings are correct for the planned installation.

Connect control battery to the battery plug.


Note: The unit should not be stored or shipped with the batteries connected. Even if the recloser is not in service, connected batteries will still expend energy. Disconnect the batteries when the recloser is not in service. Make sure that the control cable is connected between the recloser and control.

5.3 Installation procedure

5.3.1 Mount the recloser

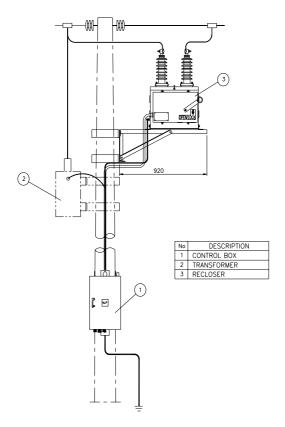

Assembly the mounting frames and then assembly the mounting frames and the recloser Lift the recloser to the pole with suitable lifting ropes and fix the recloser to the pole with hanger bands. When lifting the recloser, use the lifting lugs located on the top of the tank and follow approved procedure. At this point, the contacts are opens. Never use its porcelain bushing, bushing terminals nor manual trip handle. These handling will cause the damage to the recloser.

• The following figure shows Jinkwang's mounting frames.

Mounting frames

The assembly method of mounting frames as follows

No	Description	O'tv
1	Hex bolt, nut, Spring washer, Plate washer	4
2	Stud washer	4
3	Hex bolt, nut, Spring washer, Plate washer	4
4	Hex bolt, nut, Spring washer, Plate washer	20
5	Upper band	1
6	Lower band	1
7	Vertical bracket	2
8	Bracket support	2
9	Vertical bracket	2
10	Hanger band "A"	1
11	Hanger band "B"	1


Lifting the recloser

5.3.2 Ground the recloser

Refer to our typical mounting arrangement as shown in figure.

Make ground connections to the recloser ground connector located on the side of the recloser. It will accommodate 22mm² to 60mm² steel ground connector. Make ground connections in accordance with approved utility standards.

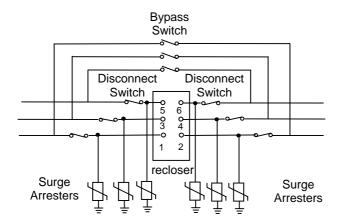
The following figure shows typical pole type mounting arrangement of the recloser.

Typical pole type mounting arrangement

5.3.3 Install the control

Refer to FTU-R100 microprocessor-based recloser control instruction manual and user's guide for complete recommended grounding instruction. Connect the control cable between the control and main body of the recloser.

5.3.4 Ground the control


Ground the control using the ground connector provided at the upper of the control cabinet for connecting 22mm² to 60mm² stranded grounding cable to a suitable ground. Make ground connections in accordance with approved utility standards. Make sure the control is grounded and properly programmed for the planned installing.

5.3.5 Make the high-voltage line connections.

- Provide surge protection to both sides of each recloser.
- Connect high-voltage lines to the recloser bushing terminals.
- Connect the high-voltage lines to the bushing terminals with source leads connected to bushings 1, 3 and 5. of the recloser. The high-voltage bare conductors should be placed in the hole of the clamp type terminals fastened with nut up to tensile torque of 400 kg.f/cm².

The bare conductor size ranging from 38mm² to 240mm² is adequate for the connection with the clamp type terminal.

Note: Disconnect switches and bypass switches are recommended to facilitate switching and isolation.

Connection diagram with switches to facilitate

- Block ground sensing via the control.
- Close source and load disconnect switches.
- Close reclosers via control signal.
- Open bypass switches.
- Enable ground sensing, if applicable.

5.4 After installation, checking items

- 1) High voltage wire insulation distance that is connected to bushing terminal should be checked by each phase.(Phase to phase spacing of high voltage wire must keep more than smallest 250mm).
- 2) Check installation condition of insulation cover that is mounted to the top end of bushing.

- 3) Check the Work tool remaining and cleanliness condition on the top of main body and mounting hardware.
- 4) Check cleanliness condition of bushing.
- 5) Make sure a position of manual operating and Lock handle (If the lock handle is placed at locking position, it should be manually returned by hot stick and placed at normal position).
- 6) Make sure a mounting condition of the control cabinet's components such as a batteries, power transformer for power supply, etc.
- 7) Check a charging condition and capacity of batteries using the battery test button in the control.
- 8) Check a grounding connection of main body and control cabinet.
- 9) Check a connection condition of the control cable and power cable.

5.5 Place the recloser in Service

Always follow locally approved procedures and safety practices when placing the recloser in service. Be sure that 24-volt control back-up battery is properly connected. When the control is connected, the recloser can be placed in service.

- 1) Move the manual operating and Lock handle (yellow color) to the OPEN (down) position.
- 2) Close the source and load disconnect switches.
- 3) Move the manual operating and Lock handle (yellow color) to up position and then close using a close button on the control panel necessarily. This resets the control and synchronizes the control to the recloser. The recloser should immediately close.
- 4) Open the bypass switch. The recloser is now in service.
- 5.6 Remove the recloser from Service
- 1) Follow standard utility procedures for removal of recloser from service.
- 2) Close the bypass switch.
- 3) Pull down the manual operating and Lock handle (yellow color) with a hotstick.
- 4) The manual operating and Lock handle (yellow color) is located on the side of the recloser.
- 5) Open the source and load disconnect switches.
- 6) Disconnect the batteries in the control box.

Note: The unit should not be stored or shipped with the batteries connected. Even if the recloser is not in service, connected batteries will still expend energy. Disconnect the batteries when the recloser is not in service.

6. RECLOER OPERATION

Warning

 Do not reply on the open position of the open/lock handle(yellow color) or the contact position indicator; it does not ensure that the line has been de-energized. Always establish a visible disconnect. Failure to follow proper safety practices can result in contact with high voltage, which will cause severe personal injury.

Caution

 Pushing the yellow manual operating and Lock handle to the closed position will not close the recloser. All close operations are initiated by the FTU-R100 microprocessor-based recloser control.

6.1 Closing Operation

Closing operation should be performed with a close button on the control panel necessarily. But, before operating the recloser on the control panel, make sure a position of manual open& lock handle. Check whether the manual open&lock handle indicate lock position or not.

Note: When the recloser is closed, the manual operating and Lock handle should be positioned in free condition(upward).

6.2 Opening Operation

The manual operating and Lock handle(yellow color) in the recloser is used to open and lock out the recloser. If the recloser is opened with a manual operating & lock handle, it automatically operates to lockout. So, it disable in the electrical and supervisory closing.

The manual operating and Lock handle is designed to be operated with a hot stick. Pulling down the manual operating and Lock handle open the main contacts of the recloser. Contact position is indicated by the open flag of the contact open indicator. The handle will remain down in the open position and not return upward in the close position.

Therefore, when the recloser is closed, the manual operating and Lock handle should be positioned in free condition.

Note: When the recloser electrically operates to lockout, the open/ lock operating handle will not drop by the open position. The handle remains in the open position only after manual operations are performed.

6.3 Lock Operation

When the manual operating and Lock handle has been manually pulled down into the lock position, any current over the minimum trip rating will cause the control to automatically lock the recloser. The manual operating and Lock handle does not interfere with manual recloser operation or operation via a SCADA trip or close signal. The recloser can be opened or closed manually regardless of the position of the lock handle.

7. MAINTENANCE

Warning

1. Always use a hotstick when working with the recloser. Failure to do so could result in contact with high voltage, which will cause severe personal injury.

Caution

2. The equipment requires routine inspection and maintenance to ensure proper operation. If it is not maintained it may fail to operate properly. Improper operation may cause equipment damage and possible personal injury.

7.1 General

Jin Kwang's reclosers require inspection and maintenance to ensure proper operation.

If the recloser is not adequately maintained, it may fail to operate properly. Even though the recloser has been designed as a low maintenance unit, maintenance interval depends on the local climatic condition. Jin Kwang recommends that the recloser be inspected and maintained for long life.

7.2 Frequency of maintenance

To assure proper and trouble-free operation, reclosers must be maintained when they have operated the equivalent of a rated duty cycle.

Note: ANSI C 37.61, "Guide fot the application, Operation and Maintenance of Automatic Circuit reclosers", gives a procedure for converting the rated standard duty cycle into an equivalent duty cycle based on the actual operating duty of the recloser

7.3 Check the operation of low pressure indicator

The recloser is filled with 0.5kgf/cm² of SF₆ gas in normal service, however, if gas pressure drops to **0.1** ~ **0.2kgf/cm²** or less by means of any cause, a low pressure locking device works to prevent the operation of the switch manually and electrically (from local control panel and from remote location).

At the same time, a low gas pressure indicator located at the side of switch will be shown and a low pressure indicator lamp on the control panel will illuminate to indicate that switch operation has been blocked.

7.4 Check the recloser visually

Inspect each of the bushing for breaks, cracks, burn or heavy pollution and other part of the recloser.

- 1) If polluted, clean the bushing.
- 2) If damaged, replace whole of the recloser with new one.

1. OVERVIEW

1.1 Protection of Distribution Lines

Distribution lines have their own equipment outdoors, the types of loads are various, and the configurations of the

networks are flexible and complicated. There are many kinds of fault causes such as direct contact of trees or birds, natural phenomenon of lightning or heavy snow, and fault spread-out due to customer's facilities. Among these faults, most of faults are temporary and the dominant fault type is ground-fault.

For rapid fault detection and fault section isolation, blackout area minimization, many protection devices such as Recloser, Sectionalizer, and Line Fuse are adopted. Among these devices, Automatic Circuit Recloser is the most important protection device, whose main functions are fault current trip and auto-reclosing.

One distribution line has over 2 Reclosers of serial connections or Recloser – Sectionalizer - Line Fuse of serial connections. This configuration is the concept of Primary Protection and Back-up Protection. In other words, protection coordination is required in the way that a protection device nearer to fault point operates first to eliminate the fault and other devices farther from fault point are configured to operate later with time delays.

1.2 Functions of Automatic Circuit Recloser

When a fault occurs on the load side of Recloser installed location, Recloser detects fault current, trips fault current at high speed, and does reclosing actions after the set time to re-activate the faulted section. In case of temporary fault, the fault can be removed by itself according to high-speed trip and dead time before reclosing actions. But, in case of permanent fault, because fault current is still detected after trip and reclosing actions of pre-set counts, Recloser is locked out finally as opened.

Recloser has the time delay element in protection function of its controller and can be freely configured for protection coordination with other protection devices.

1.3 Main Features of FTU-R100

Recloser body is connected serially to distribution line to operate open / close of the line, and Recloser Controller is in charge of measurements of currents, voltages, and other electric values, protection, control, status monitoring, recording, and communication.

FTU-R100 is a kind of IED's (Intelligent Electronic Device) for power system automation, which is a fully digitalized and microprocessor-based control device, and through connecting with this control device, Recloser can play a role of automated protection device.

Main features of FTU-R100 are as follows,

Measurements:

Magnitude and phase angle of voltages & currents (Fundamental frequency)

Sequence components of 3-phase voltages & currents True RMS, Harmonics and THD of voltages and currents

Active, reactive and apparent power for each phase and 3-phase

Energy (4-quadrant metering)
Displacement Power Factor

Frequency

Phase difference between source and load-side voltage,

Control:

Manual Recloser Open / Close at local or remote (SBO operation) Interlocking (Gas low, Handle lock, Operator place, Sync. Fail, Live Load)

Battery test

External Trip and Close by contact input (Option) Enable or disable reclosing & protection function

Protection:

3-stage over current protection

- Fast and Delayed TC trip elements for phase and earth fault : 54-types of Built-in TC Curves & 4 Customized TC Curves
- Definite time over-current element

- Definite time HCT (High Current Trip)

SEF (Sensitive Earth Fault) Detection

Auto-Reclosing (up to 4 shots)

Cold Load protection (pickup adjustment)

Magnetizing Inrush Restraints

Sequence Coordination

Open Line Detection

Phase Sync. Fail Detection

Under Voltage Protection(UVR)

Under Frequency Protection(UFR)

Status Monitoring:

10 Contacts inputs

- Recloser Open / Closed,
- Locked
- Gas Pressure Low
- External AC Power Loss
- Battery over-discharged,
- Enclosure Door Open
- Spare (3 points : Optionally external trip and close command)

Recording:

Event recording with time-stamp

- I/O, Functional, System, Fault, Demand Current & Demand Power

Fault Waveforms

- 8 faults, 32 samples/cycle, 10 cycles

FTU Restart Count Switch Open Count Fault Detection Count

Communication Protocols:

SCADA Port : DNP3.0, IEC60870-5-101 (optional) with modem control

Maintenance Port: MODBUS-RTU

2. TECHNICAL DATA

2.1 Environmental Conditions

Altitude < 2,000m Wind speed < 40m/s

Ambient Temperature - 25 ~ +70°C, KSC 0220/1

Storage Temperature - 40 ~ +85°C Humidity < 95%RH Dielectric withstand IEC 60255-5, 2kV

Impulse voltage IEC 60255-5, 6kV for current input circuit

IEC 60255-5, 4kV for voltage, power input & Contacts I/O

Insulation resistanceIEC 60255-5, >500M Ω (DC500V)High frequency disturbanceIEC 61000-4-12 class 3 (2.5kV)Fast transient noiseIEC61000-4-4 class 4 (4kV)Radio frequency noiseIEC 61000-4-3 10V/m

Radio frequency noise IEC 61000-4-3 10V/m Vibrations IEC 60255-21-1 class 2 Mechanical Shock IEC 60255-21-2 class 2

Enclosure protection IP54

2.2 Inputs / Outputs

Binary Contacts Input: 10 points

DC 24V biased in the control box Opto-isolation (Viso): 2,000Vrms

Delay time setting (10~500ms, 5ms step) for each contact input to suppress bouncing Signals

- Recloser Open
- Recloser Closed
- Recloser Locked
- Gas pressure low
- External AC power fail
- Battery discharged
- Control box door open
- External Trip command (Option)
- External Close command (Option)
- Spare

Binary Contacts Output: 4 points

DC 24V Aux. Relay Contact Pulse Output

Opto-isolation between aux. relay and logic (Viso): 2,000Vrms

Pulse width of output is variable

Signals & contact rating

Switch Open or Trip, Close

Rated current 16 A

Rated voltage/max. breaking voltage AC

Maximum breaking capacity AC

Make current (max. 4s at duty cycle 10%)

250Vac/440Vac

4,000 VA

30 A

Dielectric strength

coil-contacts 5,000 Vrms open contact circuit 1,000 Vrms

Mechanical Life $> 30 \times 10^6$ operations

Operate Time typical 7ms

Battery Test / Spare

Rated current 10 A at 250VAC/30VDC (PF=1)

5 A at 250VAC/30VDC (PF=0.4 L/R=7ms)

Make current 10 A

Max. Operating voltage 380 VAC, 125 VDC Max. switching capacity 2,500VA, 300W (PF=1)

1,250VA, 220W (PF=0.4 L/R=7ms)

Dielectric strength

coil-contacts 2,000 Vrms open contact circuit 1,000 Vrms

Mechanical Life typical 50 x 10⁶ operations
Operate Time typical 50 x 10⁶ operations
10ms max. (typical 5ms)

Current Input: 4 channel

12.5A maximum (external CT Ratio is 1,000:1 normally)

Burden: below than 1VA

3-phase currents and neutral currents

Isolation by auxiliary CT of RTU (Viso): 2,000Vrms

Surge withstand voltage: 6kV

Signals

Ia: A-phase current Ib: B-phase current Ic: C-Phase current In: Neutral current

Voltage Input: 6 channel

4Vrms at rated phase voltages Burden: below than 0.01VA Maximum input range: ~ 200%

Isolation by auxiliary PT of RTU (Viso): 2,000Vrms

Surge withstand voltage: 4kV

Signals

Va : A-phase voltage
Vb : B-phase voltage
Vc : C-Phase voltage
Vr : R-phase voltage
Vs : S-phase voltage
Vt : T-Phase voltage

Power Supply Input

DC 24V (DC20 ~ 29V)

Power consumption : Max. 15W

2.3 Measurements

Current

RMS (A) & Phase angle ($^{\circ}$) Ia, Ib, Ic, In Sequence Component I₁, I₂, I₀ Ia, Ib, Ic

Reading range 2 ~ 12,500A (External CT ratio 1000:1) Accuracy 2 ~ 600A : $\pm 0.5\%$ or $\pm 1A$ $600\sim12,000A$: $\pm 3\%$

Voltage

RMS (A) & Phase angle (°) Va, Vb, Vc, Vr, Vs, Vt

Sequence Component V_{1S} (positive seq.), V_{2S} (negative seq.), V_{0S} (zero seq.)

 V_{1L} (positive seq.), V_{2L} (negative seq.), V_{0L} (zero seq.)

True RMS Va, Vb, Vc, Vr, Vs, Vt

Phase angle difference(°) \angle Va - \angle Vr Reading range 0.1 ~ 26kV Accuracy $\pm 0.5\%$ or ± 0.1 kV

Power

Active power (kW) A phase, B phase, C phase, 3 phase total Reactive power (kVAR) A phase, B phase, C phase, 3 phase total Apparent power (kVA) A phase, B phase, C phase, 3 phase total

Reading range $0 \sim 32767$ Accuracy $\pm 1\%$

Power factor

A phase, B phase, C phase, 3 phase total

Lead/lag display

Reading range $0 \sim 1.00$ Accuracy $\pm 2\%$

Frequency

Reading range 45 ~ 55Hz (system frequency: 50Hz)

55 ~ 65Hz (system frequency: 60Hz)

Accuracy ± 0.02 Hz

Energy

Export active energy (kWh)

A phase, B phase, C phase, 3 phase total A phase, B phase, C phase, 3 phase total A phase, B phase, C phase, 3 phase total A phase, B phase, C phase, 3 phase total A phase, B phase, C phase, 3 phase total A phase, B phase, C phase, 3 phase total

Reading range 0 ~ 65535 (Rollover)

Accuracy $\pm 2\%$

Harmonics

Total harmonic distortion (THD, %)

3-phase currents THD (Ia, Ib, Ic, I3ph)

Source side 3-phase voltages THD (Vsa, Vsb, Vsc, Vs3ph) Load side 3-phase voltages THD (Vla, Vlb, Vlc, Vl3ph)

2nd ~ 8th harmonics RMS (A, kV) la,lb,lc,Va,Vb,Vc,Vr,Vs,Vt

Demand current and power

Configurable demand interval 5, 10, 15min la, lb, lc, Pa, Pb, Pc, P3ph, Qa, Qb, Qc, Q3ph Daily max. currents and power are stored.

2.4 Communications

Physical Layer

Speed (Baud rate)

RS232C, 9-pin male connector DCD(1), RX(2), TX(3), DTR(4), GND(5)

DSR(6), RTS(7), CTS(8), NC(9) 1200, 2400, 4800, 9600, 19200 BPS

Supports modem control RTS, CTS, DCD, DTR, DSR

CTS, DCD signal timeout configurable

RTS off-delay configurable

Optical isolation ESD, Transient noise protection

DNP 3.0 Protocol

Supports DNP 3.0 Subset level 2 Class of each point is settable

Supports multi-frame transmission (multi-frame interval is configurable)

Enable/Disable unsolicited message class

Supports file transfer function for uploading fault waveform or local event history

Non-transmitted events are stored on non-volatile memory during communication fail

Event buffer size: BI (254), AI(127), Counter(19)

Supports direct operate or select before operate (SBO) for control output

Supports report by exception for analog values

Protocol frame monitor was built in FTU

IEC60870-5-101 Protocol is supported (Optional)

2.5 Display & Operation panel

Setting & Information View

20 characters * 4 lines LCD with LED backlight Button: Menu, Increase, Decrease, Enter Function setting (4 setting groups), FTU configuration

Events display

Measurements display

Control Buttons

Operator place select button: Local / Remote Two step switch control buttons: Select, Open, Close

Battery test button Annunciator reset button

Reclosing enable button, Protection enable button, Ground protection enable button

LED indicators

Switch status : open, closed

Control status: selected, remote position, battery testing

Function status: A phase fault, B phase fault, C phase fault, ground fault, SEF(selective earth fault), high current trip, sync. fail between load-side and source-side voltages, live line (source-side), live line (load-side)

Reclosing status: ready, progress, lockout

FTU status: CPU run, System error, AC power on, battery low

Communication status: Rx, Tx, RTS

Serial port

RS232C without flow control PC maintenance tool link Firmware upgrade

2.6 Digital Processor

Dual Processor architecture

32-bit RISC type micro-controller with on-chip flash program memory 32-bit floating-point digital signal processor

Dual-port memory for communication between two processors Data memory (SRAM) Non-volatile memory (128kBytes) for storing events and parameters Flash Memory for storing fault waveforms Real-time clock

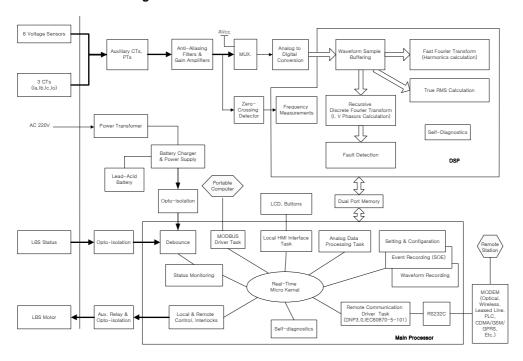
Analog/Digital conversion

16-bit A/D converter

Sampling rate: 64 samples/cycle

Anti-aliasing analog filter

Two different gain channel for each current input: effective 16-bit resolution for current measurements


DSP

Correction of analog input error Discrete Fourier Transform: phasor calculation Electric quantities calculation & fault decision

CPU

Status monitoring & control Local Human-Machine Interface Event & fault recording Remote communication Self-diagnosis

Functional Block Diagram

2.7 Settings

2.7.1 Fault Detection

Phase fault detection

FTU detects the phase fault and trip the breaker. The fastest operating time is within 45ms including

auto-recloser operating time. There are 58 trip curves, which can be selected for fast and delayed operation respectively. The curve can be edited by using several parameters, i.e. time multiplier, time adder, minimum response time. And high current trip element can be used for instantaneous trip. It's definite time characteristics. During cold-load condition, pickup multiplied by cold-load multiplier. During this condition, time-delayed curve is applied instead of fast curve. This function can be enabled or disabled by "protection enable" button.

Pickup current (I>) 10 ~ 900A (1A step) Fast TC curve 1 ~ 58 (1 step) Fast time multiplier $0.10 \sim 2.00 (0.01 \text{ step})$ 0.00 ~ 1.00sec (0.01sec step) Fast time adder 0.00 ~ 1.00sec (0.01sec step) Fast min. response time Fast reset type RDMT(Definite)/RIDMT(Inverse time) Fast reset definite time 0.00 ~ 100.00sec (0.01sec step) Delayed TC curve 1 ~ 58 (1 step) Delayed time multiplier $0.10 \sim 2.00 (0.01 \text{ step})$ Delayed time adder 0.00 ~ 1.00sec (0.01sec step) Delayed min. response time 0.00 ~ 1.00sec (0.01sec step) Delayed reset type RDMT(Definite)/RIDMT(Inverse time) Delayed reset definite time 0.00 ~ 100.00sec (0.01sec step) Definite time OC on/off ON/OFF Definite time OC pickup (I>>) 50 ~ 10,000A (1A step) Definite time OC response time 0.00 ~ 1.00sec (0.01sec step) High current pickup (I>>>) 50 ~ 10,000A (1A step) High current trip response time 0.00 ~ 1.00sec (0.01sec step) Cold-load multiplier $0 \sim 10 (1 \text{ step})$ Inrush restraint Yes/No

Earth fault detection

Earth fault detection has the same characteristics as the phase fault detection. This function can be enabled or disabled by "ground protection enable" button.

Pickup current (lo>) 5 ~ 900A (1A step) Fast TC curve 1 ~ 58 (1 step) Fast time multiplier $0.10 \sim 2.00 (0.01 \text{ step})$ $0.00 \sim 1.00 \text{sec} (0.01 \text{sec step})$ Fast time adder Fast min. response time 0.00 ~ 1.00sec (0.01sec step) Fast reset type RDMT(Definite)/RIDMT(Inverse time) 0.00 ~ 100.00sec (0.01sec step) Fast reset definite time 1 ~ 58 (1 step) Delayed TC curve 0.10 ~ 2.00 (0.01 step) Delayed time multiplier Delayed time adder $0.00 \sim 1.00 \text{sec} (0.01 \text{sec step})$ Delayed min. response time 0.00 ~ 1.00sec (0.01sec step) Delayed reset type RDMT(Definite)/RIDMT(Inverse time) Delayed reset definite time $0.00 \sim 100.00 \text{sec} (0.01 \text{sec step})$ ON/OFF Definite time OC on/off Definite time OC pickup (lo>>) 50 ~ 10,000A (1A step) Definite time OC response time 0.00 ~ 1.00sec (0.01sec step) High current pickup (lo>>>) 50 ~ 10,000A (1A step) High current trip response time 0.00 ~ 1.00sec (0.01sec step) Cold-load multiplier $0 \sim 10 (1 \text{ step})$ Inrush restraint Yes/No

Sensitive earth fault (SEF) detection

FTU can decide whether the earth fault occurred in it's own feeder or not selectively in ungrounded network. It has directional elements which is polarized by the calculated zero sequence voltage. It can be used only for alarm

Pickup current (Io)
Pickup voltage (Vo)
Max. torque angle
2 ~ 20A (1A step)
10 ~ 80% of rated phase voltage (1% step)
0,30,60,90,270,300,330° Leading

- Detection time 0.1 ~ 30.00 sec (0.1sec step)

Inrush restraintOperation selectYes/NoOff/Alarm/Trip

Inrush detection

This function can be used to detect magnetizing inrush condition by comparing 2nd harmonic component to fundamental frequency component of current.

- 2nd harmonic pickup (%) 5 ~ 50% (1% step)

Detection time 0.02 ~ 1.00 sec (0.01sec step)

- Operation select On/Off

Reclosing sequence

3-shot reclosing with sequence coordination.

Phase Total Operation Count 1 ~ 4 times (1 step) 1 ~ 4 times (1 step) **Ground Total Operation Count** 0 ~ 4 times (1 step) Phase Inst. Total Operation Count Ground Inst. Total Operation Count 0 ~ 4 times (1 step) Phase HCT Operation Count 0 ~ 4 times (1 step) Ground HCT Operation Count 0 ~ 4 times (1 step) 1st dead time (reclosing time) 0.5 ~ 180sec (0.1sec step) 2nd dead time (reclosing time) 3rd dead time (reclosing time) 1 ~ 60sec (1sec step) 1 ~ 60sec (1sec step) 4th dead time (reclosing time) 1 ~ 60sec (1sec step) Reset time 3 ~ 180sec (1sec step) Cold-load duration 0.00 ~ 60.00sec (0.01sec step) Cold-load pickup restore time 0.00 ~ 30.00sec (0.01sec step) Sequence Coordination On / Off

2.7.3 Phase Sync. Check

- Phase difference pickup (°) 5 ~ 60° (1° step)

- Detection time 0.1 ~ 30.0 sec (0.1sec step)

Operation select On/Off

2.7.4 Under-Frequency Detection

Pickup
 Detection time
 40 ~ 60Hz (0.1Hz step)
 0 ~ 600 sec (0.01sec step)

Operation select Off/LO/NR

2.7.5 Under-Voltage Detection

Pickup
 2.8 ~ 21.9 kV(0.1kV step, Phase-ground voltage)

- Detection time 0 ~ 200 sec (0.1sec step)

- Operation select Off/LO/NR

2.7.6 Setting group select

- Active setting group 1 ~ 4 (step : 1)

2.7.7 I/O configuration

- System frequency 50 or 60Hz

- Rated phase voltage 3.80 ~ 21.00kV (0.01kV step)

- External CT ratio 200 ~ 2000 (10 step)
- External neutral CT ratio 200 ~ 2000 (10 step)
- Demand interval 5 ~ 15min. (5min. step)

Live load close blockingSync. Fail close blockingYes, No

DI debounce delay time for DI1..10
 DO pulse width for DO1..4
 10 ~ 500ms (5ms step)
 10 ~ 2000ms (10ms step)

FI (Fault Indicator) reset
 Phase rotation
 Manual/Auto
 A-B-C / A-C-B

2.7.8 Communication configuration

- Baud rate 1200,2400,4800,9600,19200 Bps - Protocol DNP / IEC (Factory setting)

- Modem line topology 2 wires (half-duplex) / 4 wires (full-duplex)

- RTS Off delay 10 ~ 500ms (5ms step)
- CTS checkout time 1 ~ 255s (1s step)
- DCD wait time 0.1 ~ 30.0s (0.1s step)

2.7.9 DNP3.0 protocol configuration

Data link retry count
 Data link timeout
 Data link timeout
 Data link confirm
 Application retry count
 Application retry timeout
 Application retry timeout
 255s (1s step)
 Application retry timeout

Initial unsolicited message Yes/No

Unsolicited message delay $0 \sim 60s (1s step)$ SBO timeout $1 \sim 255s (1s step)$ Unsolicited destination address $0 \sim 65534 (1 step)$ Frame interval $10 \sim 500ms (10ms step)$

Class for Al objects (Alo~Al31)
Class for Special Al objects
Class for CNT objects (CNTO~22)

Class for CNT objects (CNTO~22)

Comparison (Toms structure)

0 ~ 3 (1 step)

0 ~ 3 (1 step)

0 ~ 3 (1 step)

2.7.9 IEC60870-5-101 protocol configuration

Cyclic period 0 ~ 60s (1 step)
 SBO timeout 1 ~ 255s (1s step)

2.8 Recording

2.8.1 Event recording

- 5msec Sequence-of-events are stored on non-volatile memory

Storage size

I/O events1023Function events1023System events63Fault current events127Demand currents and power511Max. Currents and power31

2.8.2 Waveform recording

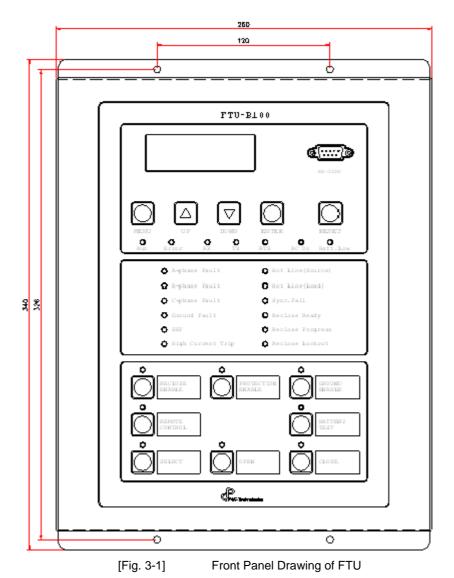
- 32 samples/cycle, 10 cycle
- max. 8 fault waveforms can be captured on non-volatile memory

2.8.3 Counters

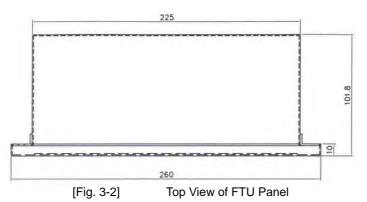
- FTU restart count
- Switch open count
- Fault count : a, b, c, n, all

2.9 Maintenance software

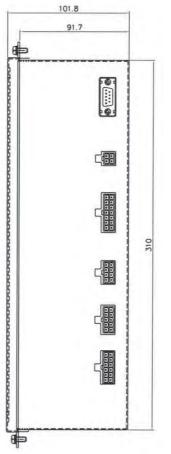
- Microsoft Windows based application S/W connected to the serial port of front panel
- The software can be connected at remote station via DNP3.0 (optional IEC60870-5-101)
- Function setting upload & change
- FTU configuration upload & change
- Event upload & display
- Status monitoring & switch control
- Measurements display
- Waveform data uploading & graphical display
- Protocol monitor
- File & print operation
- Custom curve editing


www.jinkwang.co.kr

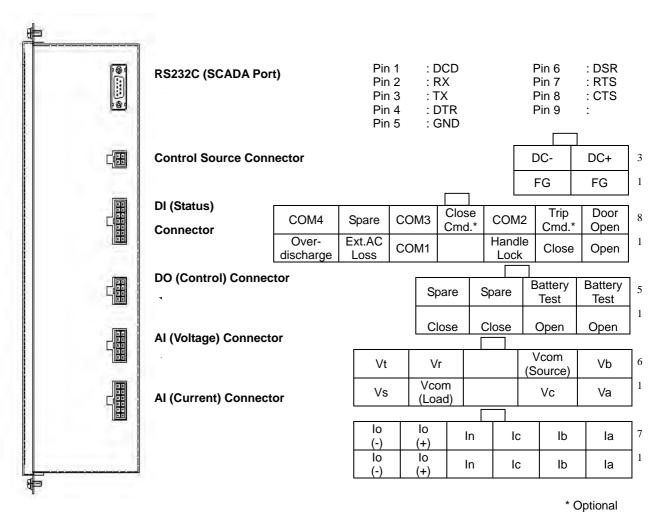
3. CONSTRUCTION AND EXTERNAL CONNECTION


3.1 Appearance & Dimension

33 / 145


Front panel of FTU-R100 has an operational LCD display, a RS232C port for setting and maintenance, indicating LED's, and push buttons.

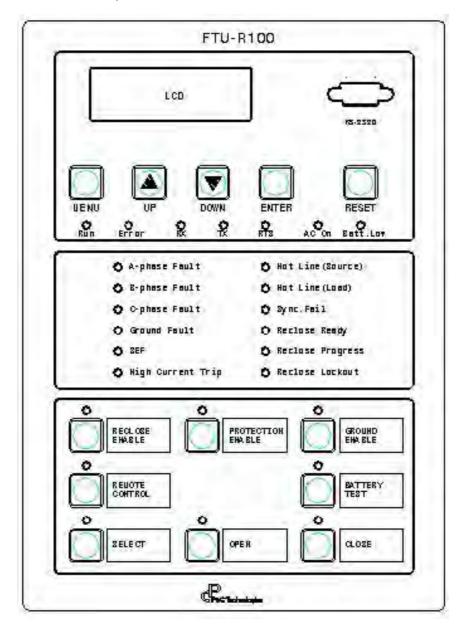
The following is the Top-view of FTU-R100 panel.


The next drawing is Side-view of FTU-R100 panel, and there are measurement module connector, control module connector, monitoring module connector, power connectors, and RS232 port for SCADA communication on the right side of FTU panel.

[Fig. 3-3] Side View of FTU Panel

3.2 Connectors of FTU

On the right side of FTU-R100 panel, there are RS232 communication port to SCADA, control source power connector, DI (Status Monitoring) connector, DO (Control) connector, AI (Measurement) connectors for Voltage and Current from top to bottom. RS232C port is DB9 male-type connector.



[Fig. 3-4] Pin Connectors on the Right Side of FTU-R100

4. FRONT PANEL OPERATIONS

4.1 Button & LED Description

On the front panel, there are LED's indicating Recloser's status, function buttons and LED's, control buttons and LED's, LCD buttons, and a RS232 port for maintenance.

[Fig. 4-1] Front Panel Sheet of FTU-R100

(1) LCD Display

4 lines * 20 characters LCD is used and through MENU / UP / DOWN / ENTER / RESET buttons, operators can survey all data and correct set values.

(2) RS232 Communication Port

Engineering tool on Notebook computer is connected to this port for maintenance. RS232C port for maintenance is DB9 female-type connector.

(3) MENU/UP/DOWN/ENTER Buttons

These buttons are used to operate FTU-R100 in local position. Refer to Section 4.2 LCD Manipulation for detailed methods.

(4) RESET Button

This button is used for Annunciator LED Reset (LED Off). Annunciator LED represents all the LED's related to Protection, Reclosing, and Self-diagnosis Error.

(5) Run / Error / Rx / Tx / RTS / AC on / Batt. Low LED's

These LED's indicate status of FTU-R100.

- Run LED is on, when normal operation of FTU (CPU OK).
- Error LED is on, when Self-diagnosis Error & Communication Trouble.
- Rx LED is on, when communication data are received.
- Tx LED is on, when transmitting communication data.
- RTS LED is on, on data transmission request.
- AC On LED is on, when External AC Power is supplied.
- Batt. Low LED is on, when battery voltage is low (discharged).

(6) A-Phase/B-Phase/C-Phase/Ground Fault & SEF LED's

Each LED is on, when a fault related to each faulted phase occurs. For earth fault of non-grounded networks, SEF LED is on. In Auto FI Reset mode, after fault restoration, these fault indicating LED's are automatically reset (off). On the other hand, in Manual FI Reset mode, operators should do command action for Reset, locally or remotely, to extinguish these LED's. Manual FI Reset mode is for the operator's acknowledgement purpose.

(7) High Current Trip (HCT) LED

When tripped by a fault current over the set HCT pickup level, this LED is on. HCT function is similar to Instantaneous Protection Element in protective relays.

(8) Hot Line (Source/Load) LED's

These LED's indicate if the lines to source side and load side are activated or deactivated. LED's are on, when the line voltage goes up the set Voltage On Level and LED's are off, when the voltage goes down the set Voltage Off Level.

(9) Sync. Fail LED

This LED is on, when the phase angle difference between Source-side voltage (Va) and Load-side voltage (Vr) is over the set value. In this case, Close control command should be inhibited.

(10) Reclose Ready LED

This LED is on, when the reclosing action is normally operated. This represents the normal stand-by status for reclosing action.

(11) Reclose Progress LED

This LED indicates the status that reclosing action is normally processed according to the preset tripping and reclosing operation sequences.

(12) Reclose Lockout LED

This LED is on, when the reclosing action is locked out to open according to the operation sequences or the Recloser is opened by the manual control command.

(13) RECLOSE/PROTECTION/GROUND ENABLE Buttons and LED's

Push the Enable buttons and makes the respective LED's on to fulfill the Reclosing and Protection functions. These buttons are toggled between Enable and Disable.

- RECLOSE ENABLE button enables or disables the Reclosing Function.
 In Disable mode, the Recloser is locked out right after the 1st trip.
- PROTECTION ENABLE button enables or disables Phase Fault Detection and Earth Fault Detection Functions, simultaneously.
- GROUND ENABLE button enables or disables Earth Fault Detection Function only.

(14) REMOTE CONTROL Button and LED

To decide the control position to Remote, push this button and make the LED on. This button and LED are also toggled between Remote and Local. But, the manipulation of this button is possible only in the local for operator's safety.

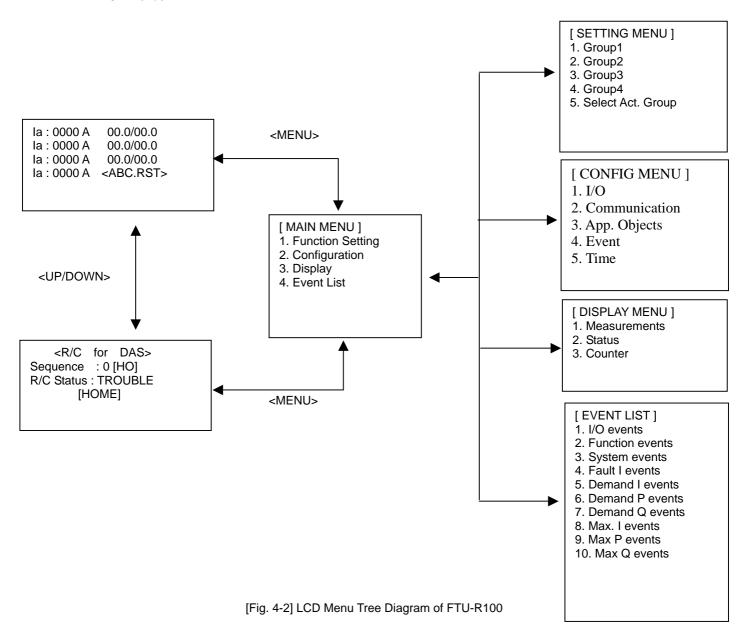
(15) BATTERY TEST Button and LED

To test the battery and charger circuit, push this button. When the test result is OK, green color LED is on for 3 seconds and off thereafter. Otherwise, LED is not on.

(16) SELECT/OPEN/CLOSE Buttons and LED's

These buttons are used to locally control (Open / Close) the Recloser. Before local control command, check first if the control position is Local. SELECT button is a two-phase safety & confirmation check mechanism, and this concept is similar to SBO (Select Before Operate) in communication protocol. To manually and locally control the Recloser, SELECT button should be pushed down to make the corresponding LED on, and this SELECT function can be expanded to the scheme of Multiple Reclosers Control in the future.

- SELECT → CLOSE: Push this button to control the Recloser manually to be closed. After closing, normal fault detection functions are re-performed. In case that Cold Load Pickup function is off or the load current is below the Cold Load Pickup Level, normal Phase & Ground Fault Detection is functioned.
- SELECT → OPEN : Manual open control opens the Recloser and makes the switch locked out to open.


38 / 145 www.jinkwang.co.kr

4.2 LCD Manipulation

MENU / UP / DOWN / ENTER buttons are used to manipulate the LCD. The following table explains the common roles of 4 buttons.

Button	Description
MENU	 To toggle between Main Menu Display from Initial Display To come back to Parent Menu from Child Menu Be careful, because all the set value changes are canceled when this button is pushed down during the change of set values.
ENTER	 To select and enter into each menu item To enter the changed set value and configuration After entering the changed set value, this button again goes out from each item to menu tree. (Toggle between menu tree and each menu item) After changing the set values, be sure to save the changed values in the Set Value Change Save Menu.
UP	 To move up the cursor in the menu tree To increment the set values The set values are rolled up and UP button at the highest value goes to the lowest value.
DOWN	 To move down the cursor in the menu tree To decrement the set values The set values are rolled down and DOWN button at the lowest value goes to the highest value.

4.2.1 LCD Menus

(1) Initial Display

[Initial Display] shows up the reclosing status.

[Fig. 4-3] [Initial Display]

MENU button at [Initial Display] goes to [Main Menu Display]. MENU button toggles between [Initial Display] and [Main Menu Display].

UP or DOWN button at [Initial Display] goes to [Current / Voltage Measurement Display]. UP / DOWN button toggles between [Initial Display] and [Current / Voltage Measurement Display].

I a: 0 0 0 0 0 A 0 0 . 0 / 0 0 . 0
I b: 0 0 0 0 0 A 0 0 . 0 / 0 0 . 0
I c: 0 0 0 0 0 A 0 0 . 0 / 0 0 . 0
I n: 0 0 0 0 0 A < ABC. RST >

[Fig. 4-4] [Current / Voltage Measurement Display]

Reclosing Sequence : 0, 1, 2, 3, 4 and 5
Total Reclosing Shot 4 Times : 0[HO], 1~4[SR], 5[LO]

* HO : Home

★ SR : Sequence Running

* LO : Lock Out

R/C Status : CLOSE / OPEN / TROUBLE (No Status Input)
 Current (la,lb,lc,ln) : Each Phase Instantaneous Current Value (unit : A)

- Voltage (ABC.RST) : Source Side Voltage (Va,Vb,Vc) /

Load Side Voltage (Vr,Vs,Vt), (unit: kV)

(2) Main Menu Display

[Main Menu Display] shows up 4 main menu items. And UP & DOWN buttons move up and down the main menu trees. ">" symbol indicates the cursor position and ENTER button enters into the selected main menu's sub items.

[Table 4-1] Main Menus and Sub Items

Main Menus	Sub Items		
Function Setting Group1, Group2, Group3, Group4, Select Act. Group			
Configuration	I/O, Communication, App. Objects, Event, Time		
Display	Measurements, Status, Counter		
Event List	I/O events, Function events, System events, Fault I events, Demand I events, Demand P events, Demand Q events, Max. I events, Max. P events, Max. Q events,		

(3) Function Setting

In Function Setting, there are 4 different setting groups and the different setting values can be stored individually

in 4 different setting groups. Select Act. Group determines one of 4 setting groups, whose setting values are now applied. From Group1 to Group4, each group has the same setting items and the following table describes only the detailed setting items of Group 1. For other groups, the same setting items as Group 1 can be referred to.

[Table 4-2] Function Setting Menus

Function Setting	Setting Items	Sub Setting Items (1)	Sub Setting Items (2)	Setting Ranges <step></step>	Default		
Group1	Detection	Phase	Pickup Level	10-900 <1A>	400		
Огоарт		F : Fast D : Delayed		F	F TCC Type	1-58 <1>	1
			F Multiplier	0.10-2.00 <0.01>	1.00		
			F Time Adder	0.00-1.00 <0.01s>	0.00		
			F Min. Resp. Time	0.00-1.00 <0.01s>	0.00		
			F-Reset Type	0(RDMT)/1(RIDMT)	0(RDMT)		
			F-Reset time	0.00-10.00 <0.01s>	0.00		
			D TCC Type	1-58 <1>	2		
			D Multiplier	0.10-2.00 <0.01>	1.00		
			D Time Adder	0.00-1.00 <0.01s>	0.00		
			D Min. Resp. Time	0.00-1.00 <0.01s>	0.00		
			D-Reset Type	0(RDMT)/1(RIDMT)	0(RDMT)		
			D-Reset time	0.00-10.00 <0.01s>	0.00		
			HCT Level	50-10000 <1>	2000		
		Ground	HCT Resp. Time	0.00-1.00 <0.01s>	0.00		
			Cold L Multi	0-10 <1>	4		
			Inrush Block	1(Yes) or 0(No)	1(Yes)		
			Ground	Ground	Pickup Level	5-900 <1A>	60
			F TCC Type	1-58 <1>	20		
			F Multiplier	0.10-2.00 <0.01>	1.00		
			F Time Adder	0.00-1.00 <0.01s>	0.00		
			F Min. Resp. Time	0.00-1.00 <0.01s>	0.00		
			F-Reset Type	0(RDMT)/1(RIDMT)	0(RDMT)		
			F-Reset time	0.00-10.00 <0.01s>	0.00		
			D TCC Type	1-58 <1>	21		
			D Multiplier	0.10-2.00 <0.01>	1.00		
			D Time Adder	0.00-1.00 <0.01s>	0.00		
			D Min. Resp. Time	0.00-1.00 <0.01s>	0.00		
			D-Reset Type	0(RDMT)/1(RIDMT)	0(RDMT)		
			D-Reset time	0.00-10.00 <0.01s>	0.00		
			HCT Level	50-10000 <1>	2000		
			HCT Resp. Time	0.00-1.00 <0.01s>	0.00		
			Cold L Multi	0-10 <1>	2		
			Inrush Block	1(Yes) or 0(No)	1(Yes)		

			LDickup	2-20 <1A>	5		
		SEF	I-Pickup				
			V-Pickup	10-80 <1%>	30		
			Angle	+/- 0,30,60,90	90		
			Detect Time	0.1-30.0 <0.1s>	1.0		
			Inrush Block	1(Yes) / 0(No)	1(Yes)		
		Func. In Use		0(Off)/1(Alarm)/ 2(Trip)	0(Off)		
		Inrush Detection	2 nd Harmonic	5-50 <1%>	20		
			Detect Time	0.02-1.00 <0.01s>	0.02		
			Func. In Use	1(On) / 0(Off)	1(On)		
	Sync. Check	Phase Diff.		5-60 <1D>	30		
	,	Delay Time		0.1-30.0 <0.1s>	0.1		
		Func. In Use		1(On) / 0(Off)	1(On)		
	Under	Pickup Level		40~60<0.1>			
	Frequency	Detect Time		0~600<0.01s>			
	Protection	Func. In Use		Off/LO/NR			
	Under	Pickup Level		2.8~21.9<0.1>			
	Voltage Detect Time		0~200<0.1s>				
	Protection	Func. In Use		Off/LO/NR			
	Trip & Ph. Oper Cnt (Phase Time-delayed)		1-4 <1>	4			
	Reclosing			1-4 <1>	4		
				0-4 <1>	2		
				0-4 <1>	2		
				0-4 <1>	0		
		Gnd HCT Op Cnt (Gro	und HCT)	0-4 <1>	0		
		Dead Time 1st (Reclos	se Interval)	0.5-60 <0.1s>	0.6		
		Dead Time 2nd		1-60 <1s>	2		
		Dead Time 3rd		1-60 <1s>	15		
		Dead Time 4th		1-60 <1s>	15		
		Reset Time (Reclosing	Reset Time)	3-180 <1s>	30		
		Cold L Time (Cold Load Duration) Reset. PC Time (Cold Load Pk Restore Time) Seq. Coordi.		0.00-60.00 <0.01s>	3.00		
				0.00-30.00 <0.01s>	0.30		
				1(On) / 0(Off)	0(Off)		
Group2					•		
Group3	Same Setting Items and Sub Setting Items as Group 1						
Group4							
Select Act.	Group	Active Setting Group Se	election	1-4 <1>	1		
<u> </u>	Active Setting Group Selection 1-4 <1>						

After finishing the set value change, when MENU button is pushed to return to [Main Menu Display], [Set Value Change Save Display] shows up to determine Yes or No. If selecting Yes and pushing ENTER button, the changed set values are all saved. However, if selecting No and ENTER button, or MENU button again, the changed set values are not saved and the existing set values are still applied.

* CAUTION: Be careful not to push down MENU buttons repeatedly! Then, the newly changed set values are neither saved nor applied.

```
Save Changed Set ?
Yes
```

[Fig. 4-5] [Set Value Change Save Display]

```
Setting Saving!
```

[Fig. 4-6] [ENTER to Yes]

```
[ MAIN MENU ]
> 1. Function Setting
2. Configuration
3. Display
```

[Fig. 4-7] [ENTER to No]

(4) Configuration

Configuration menu has the setting items for communication, I/O, and system configuration. Setting items are I/O, Communication, App. Objects, Event, and Time. The following table describes each setting item and the corresponding setting range.

Configuration	Setting Items	Sub Setting Items	Setting Ranges <step></step>
1/0	AC Rating	Frequency	50 or 60
1/0	AC Rating	Rated Volt.	3.80-21.00 <0.01kV>
		CT Ratio	100-2000 <10>
		NCT Ratio	100-2000 <10>
		Average Interval	5-15 <5min>
	DI Debounce Time	DI1 ~ DI10	10-500 <5ms>
	DO Pulse Width	DO1 ~ DO4	10-2000 <10ms>
	FI Reset Select	FI Reset	0(Manu.) / 1(Auto)
	Interlock	Live load	0(No) / 1(Yes)

		Sync. Fail	0(No) / 1(Yes)
Communication	COADA Dest	Comm. Speed	1200/2400/4800/9600/19200
Communication	SCADA Port	Slave Addr.	0-65534 <1>
		Protocol	0(DNP) / 1(IEC)
	Modem Control	Comm. Line	2 or 4 wire
	Wiodelli Colliioi	RTS Off Delay	10-500 <10ms>
		CTS Timeout	1-255 <1s>
		DCD Timeout	0.1-30.0 <0.1s>
	Protocol Parameter	D/L Retry	0-2 <1>
	1 Totocor i arameter	D/L Timeout	1-255 <1s>
		D/L Confirm	0(No)/1(Yes)/2(Sometime)
		A/L Retry	0-2 <1>
		A/L Timeout	1-255 <1s>
		Initial Unsol.	0(No) / 1(Yes)
		Unsol. Delay	0-60 <1s>
		SBO Timeout	1-255 <1s>
		Master Address	0-65534 <1>
		Frame Interval	10-500 <10ms>
App. Objects	BI Object Class	BI.0 ~ BI.31	0-3 <1>
7.66. 00,000	Al Object Class	Al.0 ~ Al.31	0-3 <1>
	Special Al Class	Fault I Event	0-3 <1>
		Max. I Ev.	0-3 <1>
		Demand I Ev.	0-3 <1>
		Max. P Ev.	0-3 <1>
		Demand P Ev.	0-3 <1>
		Max. Q Ev.	0-3 <1>
		Demand Q Ev.	0-3 <1>
	CNT Object Class	CNT.0 ~ CNT.15	0-3 <1>
	Al Object VOC	Al.0 ~ Al.31	0-50 <1%>
	Al Obj. VOC-Limit	Al.0 ~ Al.31	0-65535 <1>
	CNT Object VOC	CNT.0 ~ CNT.15	0-65535 <1>
Event	Set S/W Counter	S/W Count	0-65535 <1>
_70	Clear Events	Clear all events?	Yes / No
	Clear Faults	Clear all faults?	Yes / No
Time	<setting time=""></setting>		yyyy/mm/dd hh:nn:ss

After finishing the set value change, when MENU button is pushed to return to [Main Menu Display], [Set Value Change Save Display] shows up to determine Yes or No. If selecting Yes and pushing ENTER button, the changed set values are all saved. However, if selecting No and ENTER button, or MENU button again, the changed set values are not saved and the existing set values are still applied.

45 / 145 www.jinkwang.co.kr

^{*} CAUTION: Be careful not to push down MENU buttons repeatedly! Then, the newly changed set values are

neither saved nor applied.

```
Save Changed Set ?
yes
```

[Fig. 4-8] [Set Value Change Save Display]

```
Setting Saving!
```

[Fig. 4-9] [ENTER to Yes]

```
[ MAIN MENU ]
1. Function Setting
> 2. Configuration
3. Display
```

[Fig. 4-10] [ENTER to No]

(5) Display

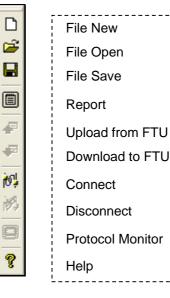
In Display menu, measurement values, monitored status, and counter values are displayed.

Display	Items	Displayed Values [unit]
Measurements	Currents	Ia, Ib, Ic, In, I1(Positive-sequence), I2(Negative-sequence) : Magnitude [A] & Phase Angle [Deg]
	Voltages	Va, Vb, Vc, Vr, Vs, Vt [kV] Zero-sequence: VoS, VoL, (S: Source-side, L: Load-side) Positive-sequence: V1S, V1L Negative-sequence: V2S, V2L : Magnitude [A] & Phase Angle [Deg]
	Active Power	Pa, Pb, Pc, P3p [MW]
	Reactive Power	Qa, Qb, Qc, Q3p [MVAR]
	Apparent Power	VAa, VAb, VAc, VA3 [MVA]
	Power factor	PFa, PFb, PFc, PF3 : Lead / Lag (Lead = 1)
	Energy	PEa, PEb, PEc, PE3 [MWh], QEa, QEb, QEc, QE3 [Mvarh]
	Phase Difference	Phase Difference between A-phase and R [Deg]
Status	Switch	OPEN / CLOSE / TROUBLE
	Handle	LOCK / UNLOCK

	Gas	NORMAL / LOW			
	AC Power	NORMAL / OFF (External AC Power Loss)			
	Battery	NORMAL / Low			
	Door	CLOSED / OPEN			
	Spare #1, #2, #3	ON / OFF (Spare #1,2 : Trip, Close command)			
	Loc / Rem	LOCAL / REMOTE			
	FRTU Addr	FTU-R100 Slave Address			
	Master Addr	Control System Master Address			
	Ver.	FTU-R100 Firmware Version			
Counter	Restart	FTU-R100 Restart Count			
	S/W Count	Recloser Body Open Count			
	All Faults	All Faults Detection Count (Each Phase Fault Count + Reclosing Count)			
Faults (A) Faults (B) Faults (C) Faults (N) Each Phase Fa		Each Phase Fault Detection Count			

(6) Event List

In Event List menu, all types of events are displayed with occurred time and event description. Using UP & DOWN buttons, event list can be scrolled up and down in the LCD display.


Event List	Description	Max. Event No.
I/O events	Status Change of Binary Input/Output	1023
Function events	Operated Status of Protection Functions	1023
System events	Setting Change, Reset	63
Fault I events	Latest Fault Current, Faulted Phase, Time	127
Demand I events	Each Phase Daily Average Load Current, Time	511
Demand P events	Each Phase & 3-phase Daily Average Active Power, Time	511
Demand Q events	Each Phase & 3-phase Daily Average Reactive Power, Time	511
Max. I events	Each Phase Daily Peak Load Current, Time	31
Max. P events	Each Phase & 3-phase Daily Peak Active Power, Time	31
Max. Q events	Each Phase & 3-phase Daily Peak Reactive Power, Time	31

4.3 Setting & Operation Tool (FTU_SET)

FTU-R100 has a dedicated setting and operation tool, FTU_SET. This tool is operated on PC or Notebook computer, and through RS232 port on front panel of FTU-R100, setting & configuration changes, event list & fault waveform view, firmware download, communication protocol & data frame monitor, measurement & status display, and correction factor calibration are possible. For this communication, MODBUS protocol is used. Main menus of this tool are File(F), Option(O), Help(H).

[File Menu]

- Connect : to start communication with FTU-R100

Disconnect : to quit communicationFile New : to create a new setting file

- File Open : to load a setting file (*.str) to use previously saved setting values

- File Save : to save edited values to a setting file for next use

Report : to save a report text file(*.rpt) from converted setting value
 Upload from FTU : to upload data from FTU-R100 (setting, event, fault)

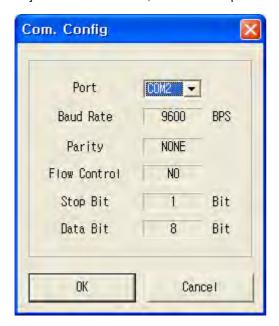
- Download to FTU : to download edited set values to FTU-R100

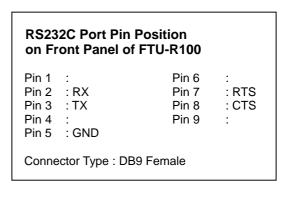
- Clear All Events : to delete all event data stored in FTU-R100

- Clear All Fault Records: to delete all fault data stored in FTU-R100

- Exit : to quit the program

[Option Menu]

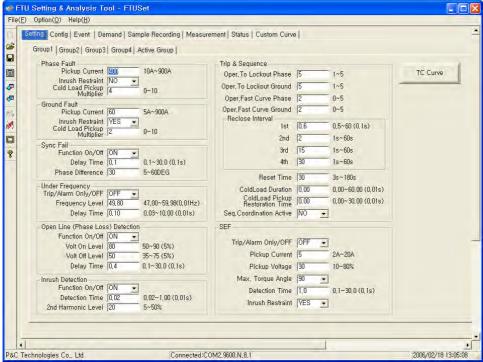

- Comm. : to open a window for communication configuration of the tool - Protocol monitor : to open a window for communication status monitoring

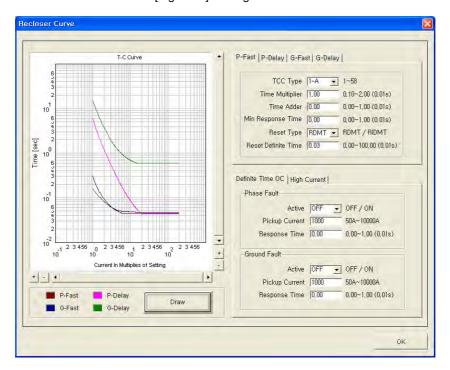

[Help Menu]

FTU_SET tool's program version information

(1) Connection between FTU_SET and FTU-R100

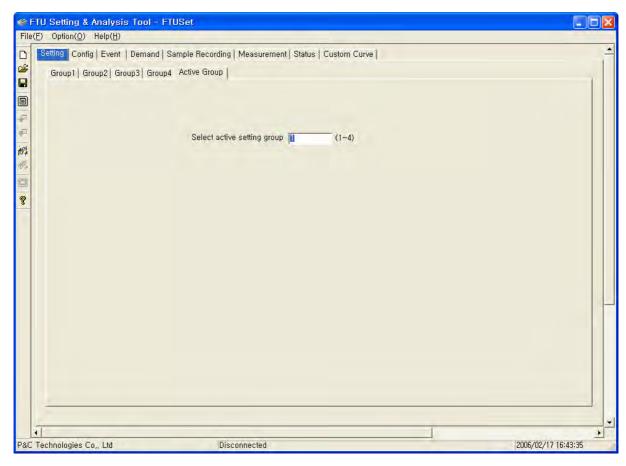
Before starting to connect to FTU-R100, communication options are firstly configured in the menu [Option – Comm.]. In this menu window, select a serial port of Notebook. MODBUS protocol has RTU mode




[Fig. 4-11] [Option – Comm] Window

(2) Setting Window

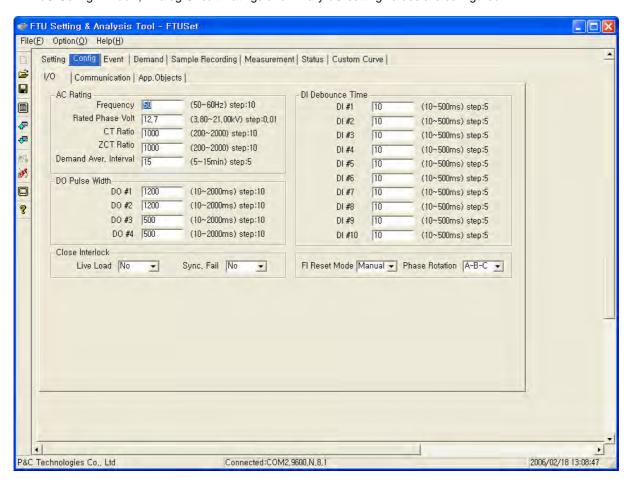
In Setting Window, existing setting values of FTU-R100 can be viewed through "Upload" button, or setting values are edited and downloaded to FTU-R100 by clicking "Download" button to apply new setting values to FTU-R100. In some cases, operators require to save and reuse these edited setting values. To satisfy this request, FTU_REC_SET tool has "New", "Open" and "Save" menu items in [File] menu. The file extension name is *.str (setting file) and "Report" menu item save to report file the edited setting values.



[Fig. 4-13] Setting Window

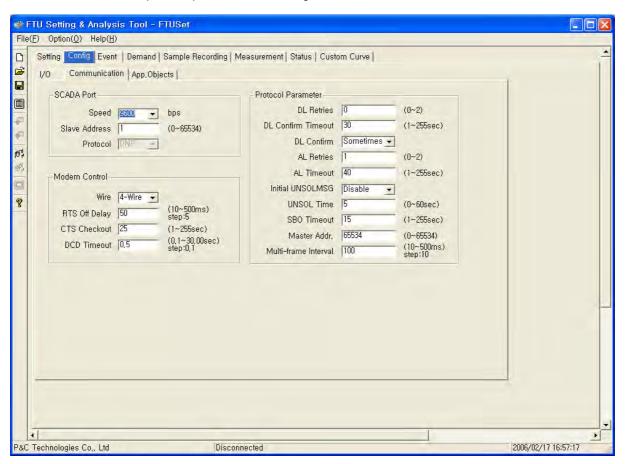
[Fig. 4-14] Recloser Curve Window

To facilitate operator's TC curve editing, FTU_REC_SET provides Recloser Curve Window. As Setting Window is activated, click "TC Curve" button to open Recloser Curve Window. Through this Window, operators can refer to the shape of TC curves, which is now formed by some parameters.

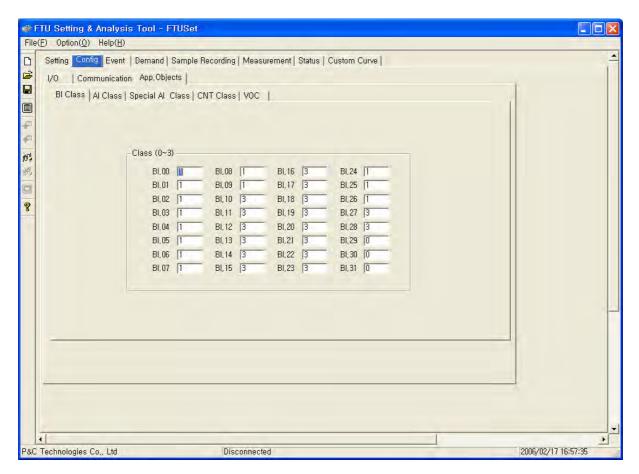

[Fig. 4-15] Active Setting Group Window

FTU-R100 can simultaneously store 4 different setting group's setting values in memory. All the setting items in each group are exactly the same and operators can select one group to apply as an Active Group.

(3) Config Window

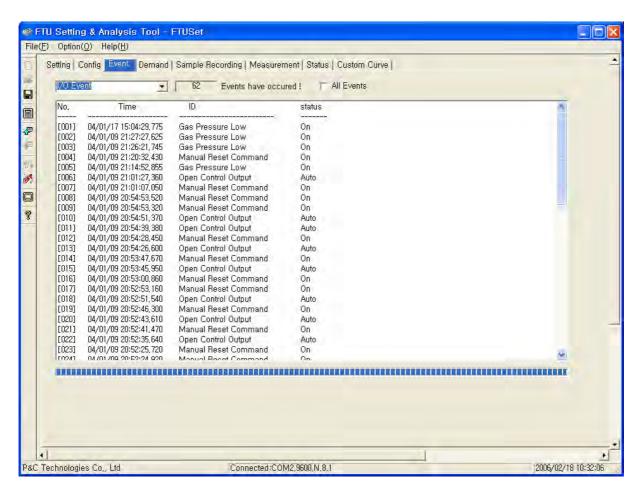

In Config Window, there are I/O Config Window, Communication Config Window, and App. Object Config Window. Current configuration values of FTU-R100 can be viewed through "Upload" button, or configuration values are edited and downloaded to FTU-R100 by clicking "Download" button to apply new configuration values to FTU-R100.

In I/O Config Window, Analog Circuit Ratings and Binary I/O setting values are configured.


[Fig. 4-16 I/O Config. Window

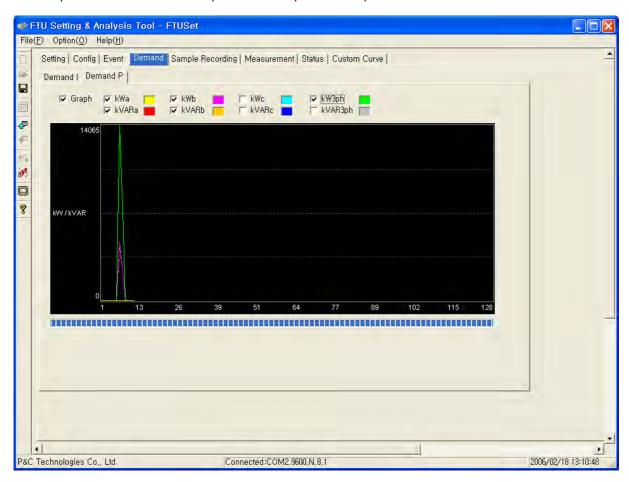
In Communication Config Window (Fig. 4-17 on the next page), communication speed, protocol, slave address, modem control data, and protocol parameters are configured.

[Fig. 4-17] Communication Config. Window


In App Object Config Window, all kinds of Application Object Classes for binary input, analog input, counter input and VOC (Value of Change) in DNP v3.0 communication protocol are configured.

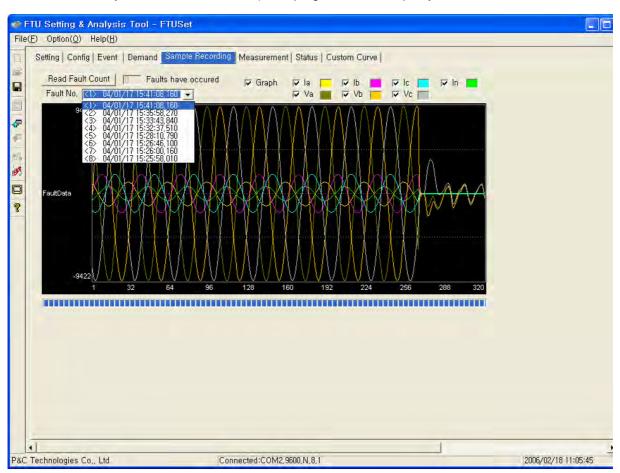
[Fig. 4-18] Communication Config. Window

(4) Event Window


In Event Window, operators can list up all the event records, which are stored in the memory of FTU-R100 by clicking "Upload" button. All types of events can be uploaded or each type of event can be separately uploaded from FTU-R100. The kinds of event types are I/O Event (1023), Function Event (1023), System Event (63), Fault Event (127), Demand Event (511), Max Current Event (31), and Max Power Event (31). Each event type and descriptions are explained in the Section 4.2.1. Time Resolution for event recording is 5msec and Scanning Interval is 1msec.

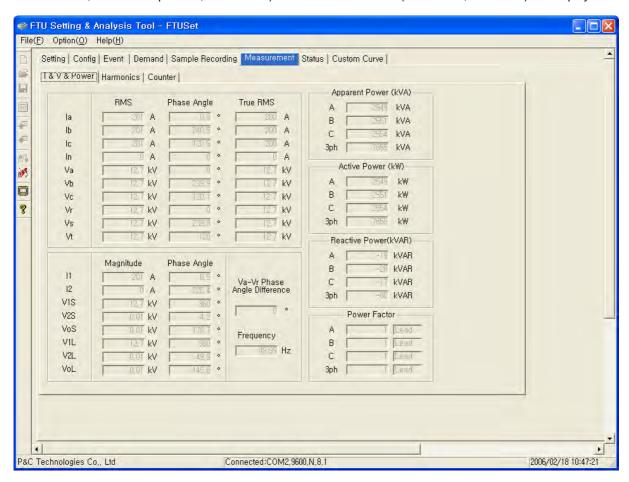
[Fig. 4-19] Event Window

(5) Demand Window


Demand Window displays Daily Average Demand Current and Power in the list form and waveform. When the Graph check box is unchecked, Demand Current and Power are listed as in the Event Window. Averaging Interval is between 5 and 15 minutes, and maximally 128 data are stored for each measurement. Demand Current Window displays average currents of Ia, Ib, Ic, In, and Demand Power Window displays the averages of active demand power and reactive demand power for each phase and 3 phases.

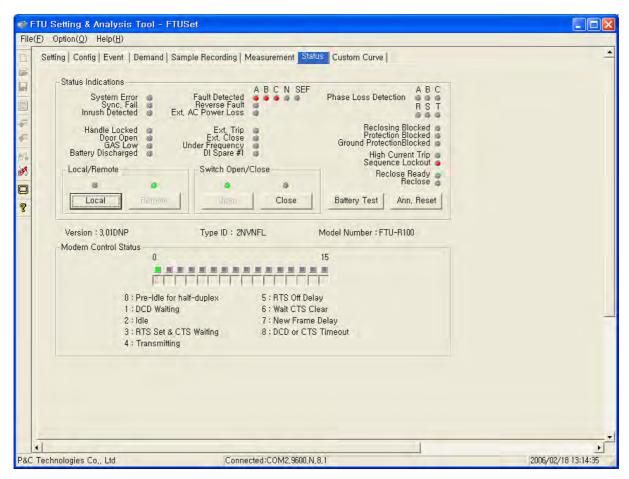
[Fig. 4-20] Demand Window

(6) Sample Recording Window


Sample Recording Window displays Fault Waveforms stored in FTU-R100. At first, click "Read Fault Count" to upload the recorded fault data to FTU_REC_SET tool, and select one of 8 recorded faults to view. As in Demand Window, fault data are listed or fault waveforms are drawn. Fault waveform drawings are displayed for each phase current and each phase voltage. And, each graph is distinguished by different color. FTU-R100 can record and store the data for up to 8 faults, and each waveform has the data of 10 cycles (7 cycles before line deactivation and 3 cycles after line deactivation). Sampling Rate is 32 sample/cycle.

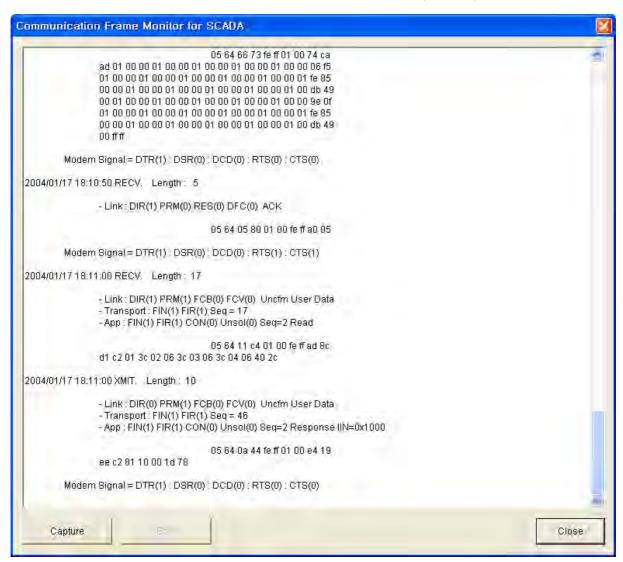
[Fig. 4-21] Sample Recording Window

(7) Measurement Window


Operators can monitor all kinds of measurement values such as current, voltage, power, and energy, etc. on-line in I & V & Power Measurement Window. And, FTU-R100 has the function of Harmonic Analysis, therefore up to 8th harmonics RMS values and THD (Total Harmonic Distortion) for Ia, Ib, Ic, Va, Vb, Vc, Vr, Vs, Vt are measured and displayed in Harmonics Measurement Window. Lastly, in Counter Measurement Window, counter values (FTU Restart Count, Recloser Trip Count, Fault Count) and accumulation data (MWattHour, MVarHour) are displayed.

[Fig. 4-22] Measurement Window

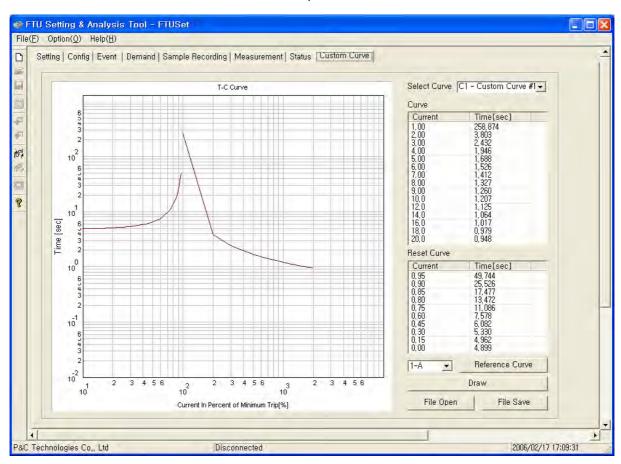
(8) Status Window


In Status Window, all the status indications and FTU-R100's firmware version and model ID, and modem control status data are displayed.

[Fig. 4-23] Status Window

(9) Protocol Monitor Window

With FTU-R100 connected to the control center system (Master), through this Window, operators can check communication protocol and data frames. This Window's can be saved in a log file using "Capture" button



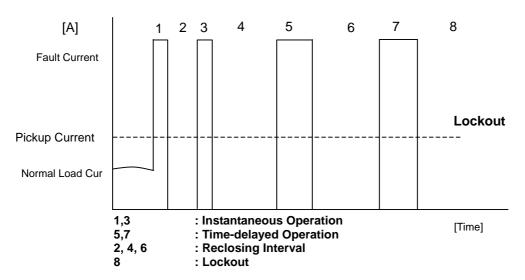
[Fig. 4-24] Protocol Monitor Window

60 / 145 www.jinkwang.co.kr

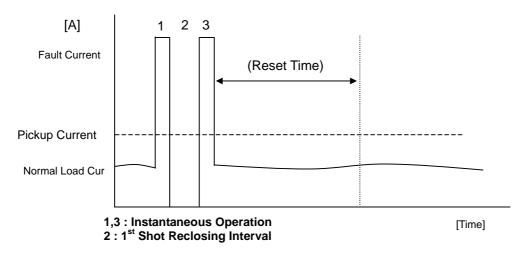
(10) Custom Curve Window

The FTU-R100 has 4 custom editing curves. In Custom Curve Window, the current custom curve data of FTU-R100 can be viewed through "Upload" button, and those can be edited and downloaded to FTU-R100. Then the new custom curve data is applied. To open and save the curve data from or to a file, "File Open" and "File Save" button can be used. The file format is CSV that can be open in the MS-Excel.

[Fig. 4-25] Custom Curve Window


5. PROTECTION FUNCTIONS

5.1 Auto-Reclosing Sequence


For permanent fault, under the condition of reclosing enabled, no other restraints such as Cold Load and Inrush, and no HCT, recloser will be locked out to open after the Reclosing Count repeating trip and reclose according to the preset settings.

For example in the below figure, the reclosing sequence is organized in 2F2D, which means the Recloser protection function operates as Instantaneous (Fast) element during first 2 reclosing shots and operates as Time-delayed element during last 2 reclosing shots. This composition also can be configured.

For temporary fault, if the fault is removed before the preset Reclosing Count and no fault is detected during the preset Reset Time, then the reclosing sequence is initialized to normal operation standby mode. When a fault is detected again during the Reset Time, the Recloser will be locked out after the remaining reclosing counts excluding the previously operated reclosing counts.

[Fig. 5-1] Permanent Fault: 3 Shots Reclosing & 2F2D

[Fig. 5-2] Temporary Fault: Fault Removal During 1st Reclosing Interval

5.2 HCT (High Current Trip)

Very high valued current can cause serious damage to the Recloser and the resultant fault spread-out, therefore HCT element should operate faster than Instantaneous or Time-delayed TC curve's operation time and its priority must be higher than the normal auto-reclosing sequence.

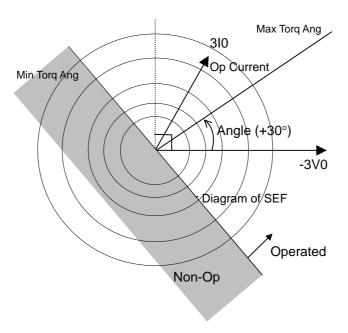
HCT can be configured up to 4 times for phase fault and ground fault, respectively. HCT Count setting value 0 means HCT element disabled.

5.3 Cold Load Pickup

On the line to which loads are connected, when the line is re-activated after deactivation (in case of first time line activation after line installation or re-activation after lockout-to-open due to a permanent fault), there can be such a phenomenon that the load current higher than fault detection pickup level flows instantly and goes down the pickup level. This is called Cold Load and Cold Load Pickup function is to prevent and distinguish Cold Load from the real fault current.

In Cold Load mode, without changing operational characteristics, pickup level is changed by the times of Cold Load Multiplier (1~10) and the characteristics of time-delayed element operate even if the setting is in the Instantaneous element. If the transient current goes down and retains below the pickup level within Cold Load Duration, then the normal sequence mode is restored after Cold Load Restore Time. These settings exist for both phase fault and earth fault separately, and the value 0 of Cold Load Multiplier means this Cold Load Pickup function disabled. (Normal Reclosing Sequence mode is applied.)

5.4 Inrush Restraints


Inrush Current is an over-current higher than pickup level, which is mainly caused by transformer's excitation current at closing action. To distinguish inrush current from load current, 2nd harmonics percentage is adopted as a criterion.

When, in the setting menu, [Fault Detection – Phase/Ground - Inrush Block] is set to Yes and [Fault Detection – Inrush Detection – Function In Use] is set to On, inrush current over pickup level is considered as normal load current and reclosing sequence is not processed.

5.5 SEF (Sensitive Earth Fault) Detection

On the non-grounded network, it is hard to detect fault current because ground current of non-grounded network is much low. Therefore, FTU-R100 is designed to measure zero-sequence values from either external Core Balanced Current Transformer (or ZCT) or Residual Connection of 3 Phase Current Transformers to detect earth fault in the non-grounded network. This function is generally called SEF detection.

In case of earth fault in the non-grounded network, since very small fault current due to line capacitance component flows into the fault point from both sides, SEF detection also considers the fault direction even in the radial network. Maximum Torque Angle is for setting the phase difference between zero-sequence voltage and zero-sequence current, and the protection zone is between -90° and +90° on the basis of Maximum Torque Angle.

5.6 Sequence Coordination

In case that there are over 2 Reclosers which operate in serial connections, Sequence Coordination function prevents unnecessary trip of source-side Recloser by instantaneous element due to load-side fault. When this function is set to on and the fault is restored to normal state by load-side Recloser during source-side Recloser's time-delayed operation, source-side Recloser only increments the reclosing counts without tripping. However, source-side Recloser performs tripping at the last reclosing count. If the Reclosing function is disabled, Sequence Coordination function is no longer carried out.

For Sequence Coordination, the following setting items should be issued and checked precisely between serially connected Reclosers.

- Identical Protection Characteristics such as TC Curves, Total Operation Count, Instantaneous Operation Count
- Identical Reclosing Interval (Dead Time)
- Source-side TC Curve Time Delay Over 100msec Than Load-side
- Source-side Reset Time Longer Than Load-side Longest Reclosing Interval (To Prevent Source-side Recloser Reset During Load-side Reclosing Action)

6. TC CURVE SETTING

FTU-R100 has 54 types of built-in TC curves including ANSI, IEC standard curves. And customer can define additional 4 curves as his own curves by using PC software. Basically, built-in curves have inverse time characteristics, but can be easily adjusted by three parameters such as multiplier, time adder and minimum response time. In engineering step, the selection and adjustments of TC curve shall be done for the protection coordination with other protection devices in the feeder.

The following parameters are related to change and editing of TC curve's characteristics.

- Time Dial Multiplier
- Time Adder
- Minimum Response Time

Time Multiplier is multiplied to the operating time of basic curve (TDM=1.0), Then Time Adder is added to the resulting operating time of the curve adjusted by multiplier. Minimum response time defines the fastest operating time of the curve. The following section 6.1 shows an example of TC curve adjustments.

The following tables describe the built-in TC curve types and the corresponding numbers in the setting. TC curve graphs are shown in the appendix.

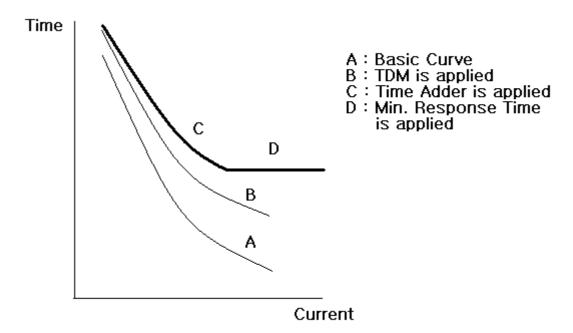
Setting No.	1	2	3	4	5	6	7	8	9	10
Curve	Α	В	С	D	Е	EI	K(P)	L	М	N
Setting No.	11	12	13	14	15	16	17	18	19	20
Curve	NI	Р	R	Т	V	VI	W	Υ	Z	1
Setting No.	21	22	23	24	25	26	27	28	29	30
Curve	2	3	4	5	6	7	8	8*	9	11
Setting No.	31	32	33	34	35	36	37	38	39	40
Curve	13	14	15	16	18	N1	N2	N3	N4	F
Setting No.	41	42	43	44	45	46	47	48	49	50
Curve	G	Н	J	LI	8+	17	K(G)	A*	SI	IM
Setting No.	51	52	53	54	55	56	57	58		
Curve	IV	IE	U8	U2	C1	C2	С3	C4		

Curve Type	Curve Name
Recloser Curves	A, A*, B, C, D, E, F, G, H, J, K-P, K-G, L, M, N, P, R, T, V, W, Y, Z, 1, 2, 3, 4, 5, 6, 7, 8, 8*, 8+, 9, 11, 13, 14, 15, 16, 17, 18,
IEC Standard Curve	Standard inverse (NI), Very inverse (VI), Extremely inverse (EI), Long-time inverse (LI), Short-time inverse (SI)
ANSI/IEEE Standard Curve	Moderately inverse (IM), Very inverse (IV), Extremely inverse (IE), Long-time inverse (U8), Short-time inverse (U2)
KEPCO Standard Curve	N1, N2, N3, N4
User Customized Curve	C1, C2, C3, C4

^{*} IEC, ANSI/IEEE, US Standard TC Curve Equation

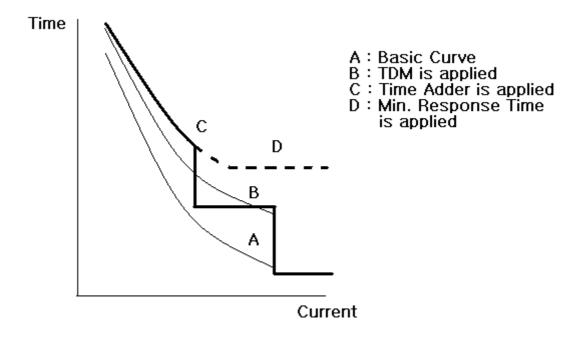
T = TDM • { α / (M $^{\beta}$ - 1) + γ } T_{RESET} = TDM • { τ / (M $^{\beta}$ - 1)}

T = Operate Time TDM = Multiplier Setting T_{RESET} = Reset Time

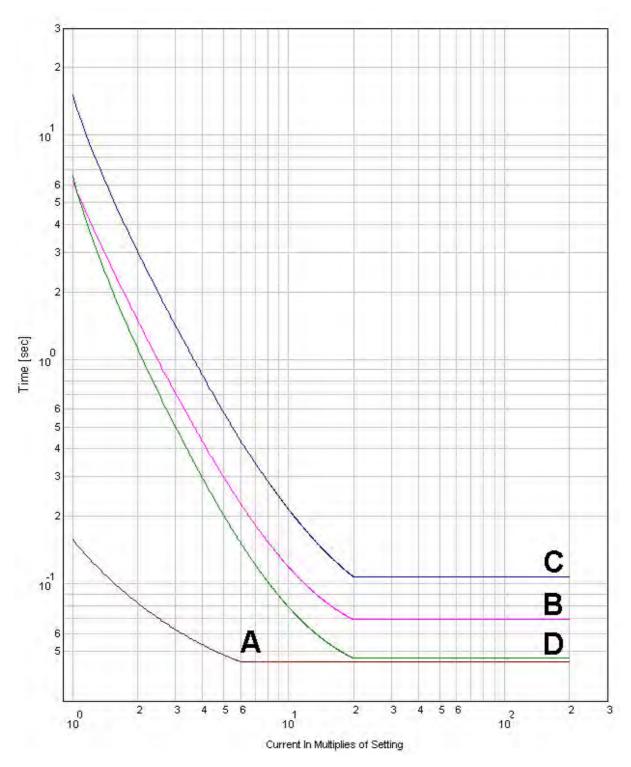

Curve Type	Standard	α	β	γ	τ
Standard Inverse (NI)		0.14	0.02	-	-
Very Inverse (VI)		13.5	1	-	-
Extremely Inverse (EI)	IEC	80.0	2	-	-
Short -Time Inverse (SI)		0.05	0.04	-	-
Long -Time Inverse (LI)		120	1	-	-
Very Inverse (IV)		19.61	2	0.491	21.6
Extremely Inverse (IE)	IEEE	28.2	2	0.1215	29.1
Moderately Inverse (IM)		0.0515	0.02	0.114	4.85
Short -Time Inverse (U2)	CO2	0.2394	0.02	0.01694	2.261
Long -Time Inverse(U8)	CO8	5.95	2	0.18	5.95

6.1 Example of TC Curve Editing

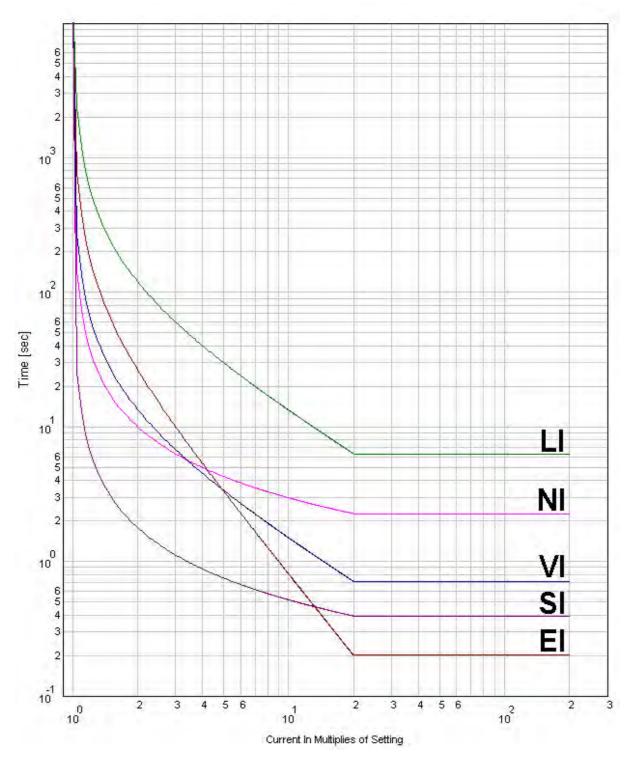
3 parameters are applied in the following order. The values in the parenthesis are examples.


- (1) Time Multiplier (1.5)
- (2) Time Adder (0.03)
- (3) Minimum Response Time (0.1)

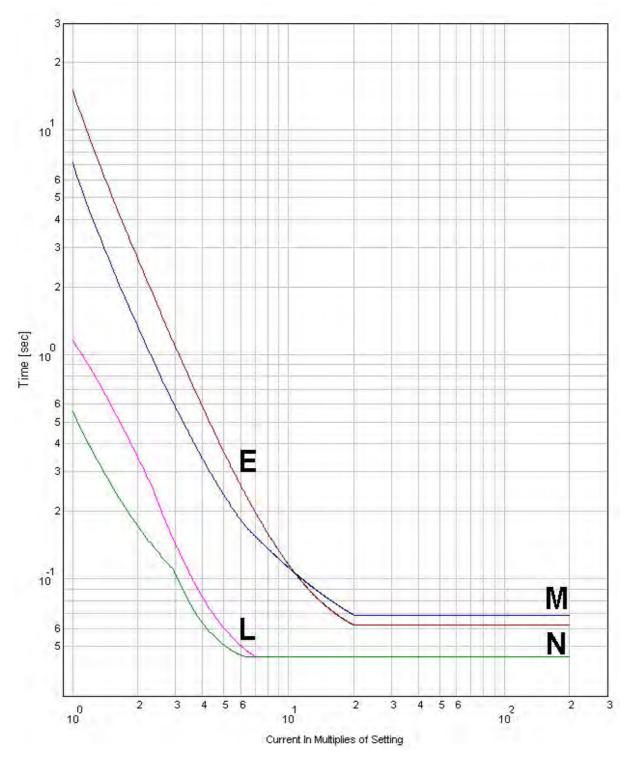
In the next figure, for example, the curve A is the basic curve. Assume the operating time of the basic curve (A) at 16 times pickup current is 0.04 sec. When applying Multiplier, Curve A changes its shape, that is, the curve becomes less steep in time axis and operation time becomes longer by a multiplier at the same current value like B in the figure. The operating time at 16 times pickup becomes 0.06sec. Then Time Adder shall be applied. The operating time over all current range becomes longer by that value. In this example the operating time of the resulting curve C is 0.09sec. Finally Minimum Response Time cuts the curve part, which is shorter than this time. Then the actual operating time of the example at 16 times becomes 0.1 sec.

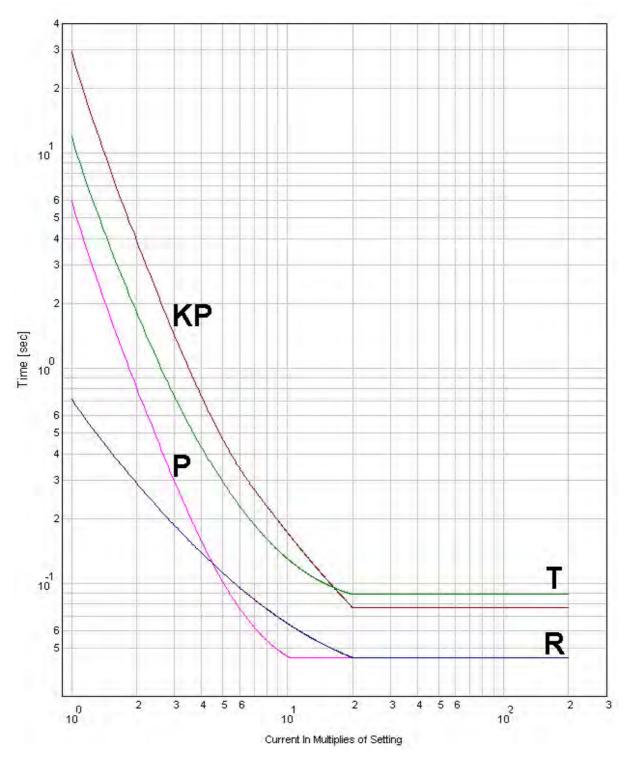

[Fig. 6-1] TC Curve Editing Example 1

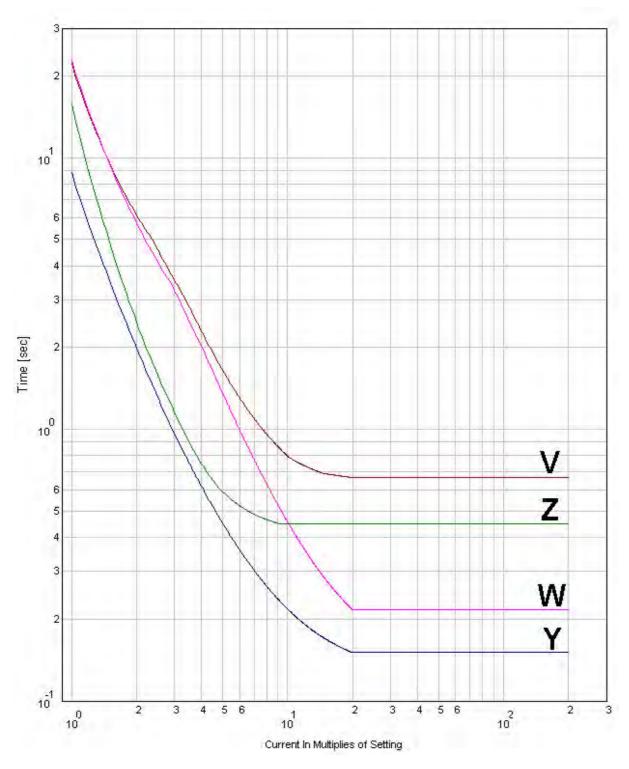
There are two additional definite-time over-current elements in the controller. The next figure shows 3-stage over-current protection characteristics. The third stage is prepared for instantaneous protection. Therefore the harmonic restraint is not applied to third stage element, but the second stage definite time over-current element.

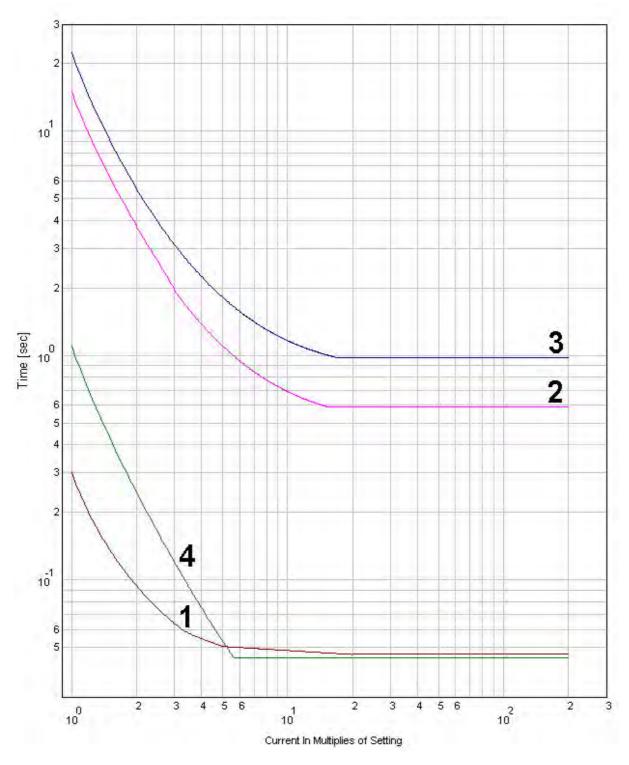


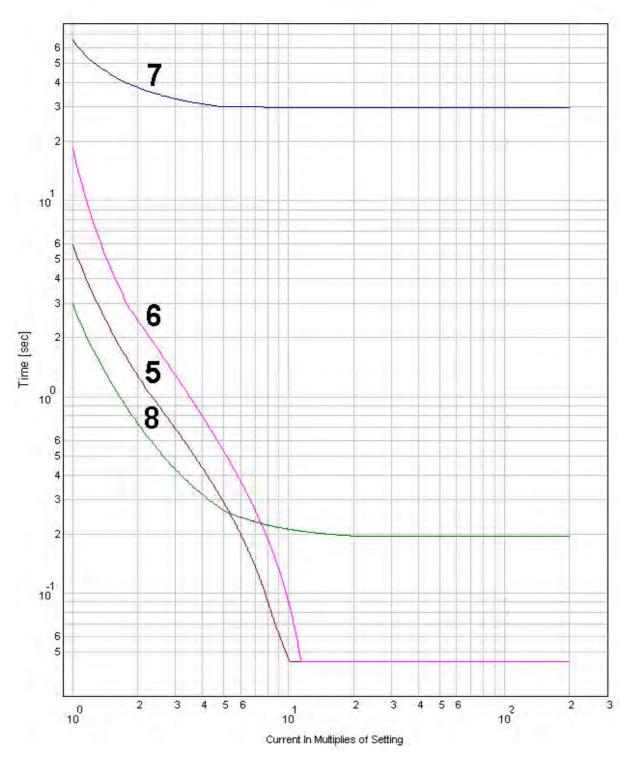
[Fig. 6-2] TC Curve Editing Example 2

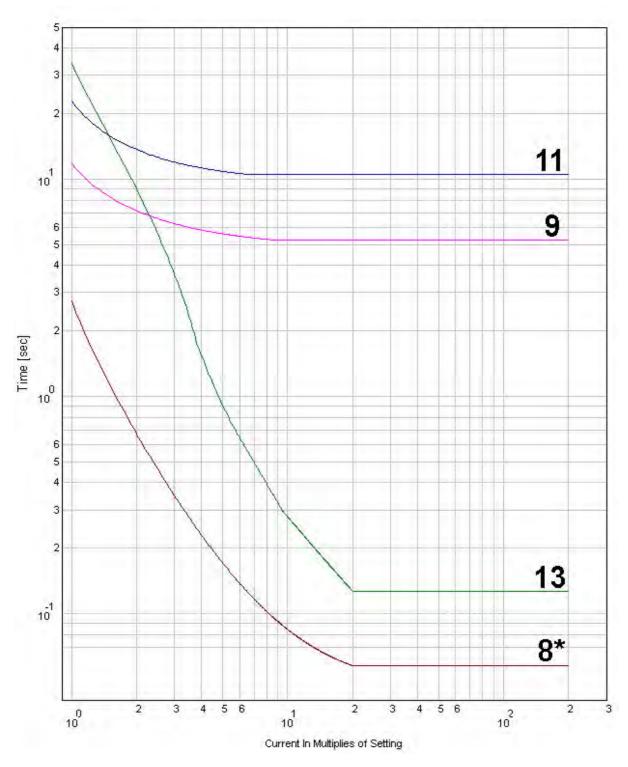

Appendix 1. TC (Time-Current) Characteristic Curves

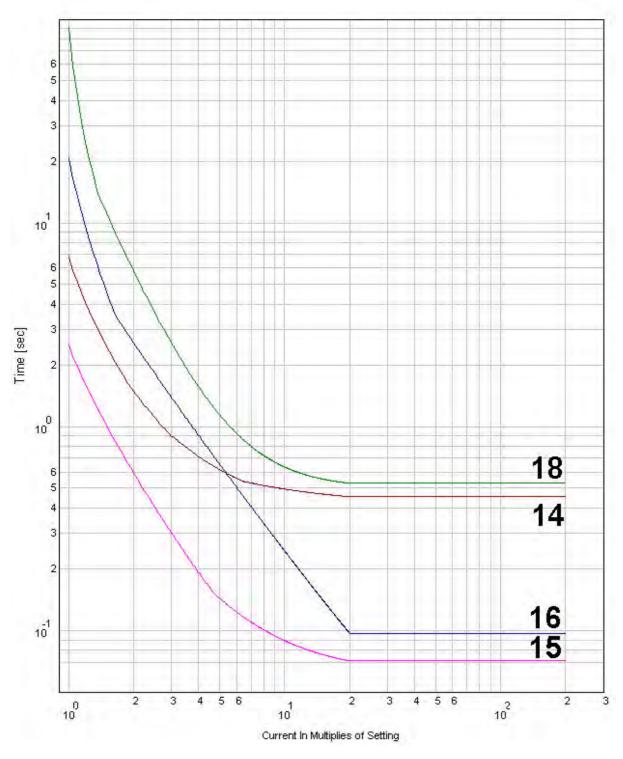

[Fig. A-1-1] A, B, C, D curves

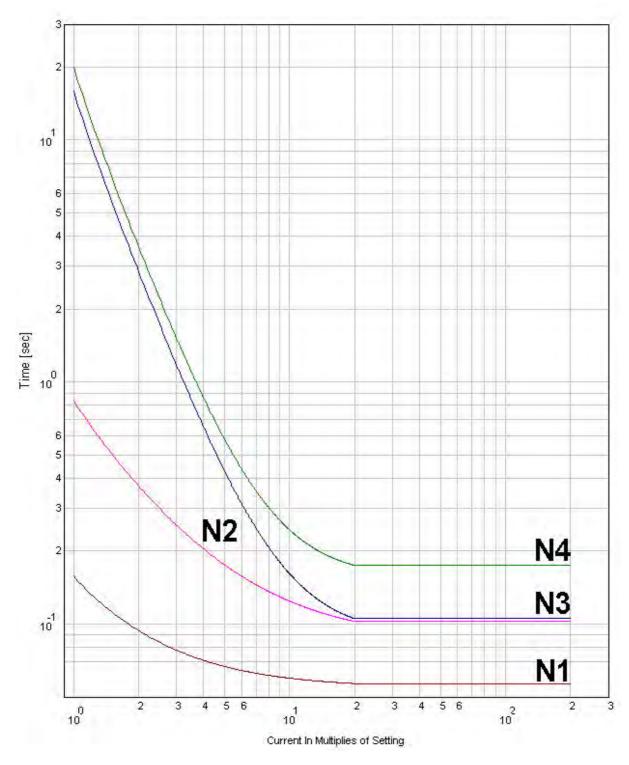

[Fig. A-1-2] IEC Standard Curves (EI, NI, VI, LI) curves

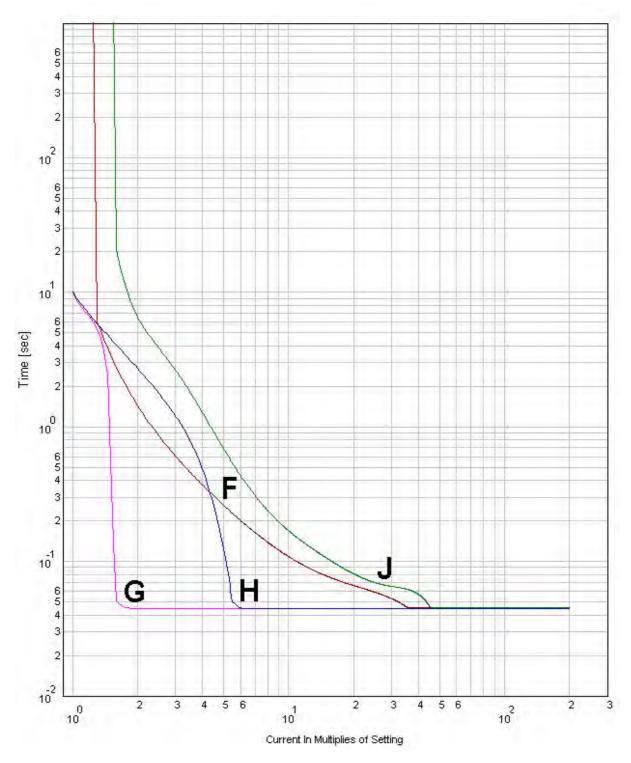

[Fig. A-1-3] E, L, M, N curves

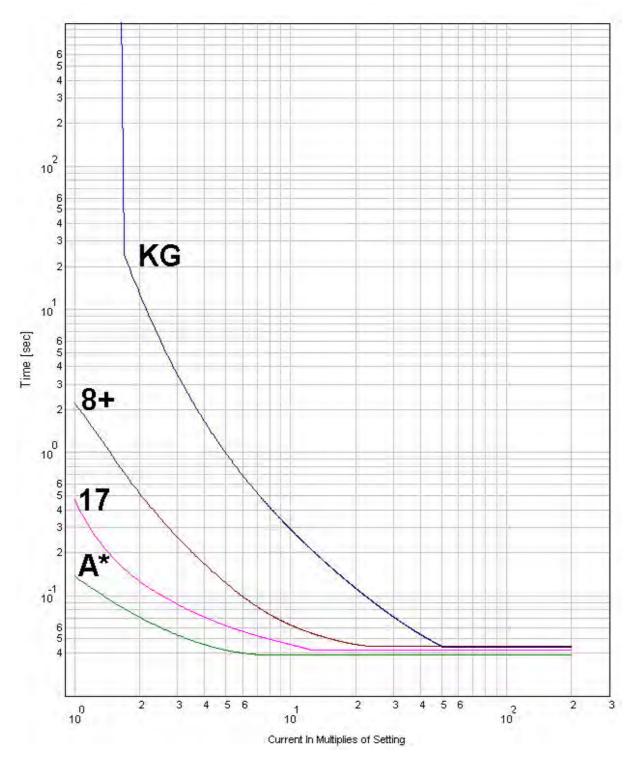

 $[Fig. A-1-4] \hspace{1cm} K(P), \, P, \, R, \, T \, curves$

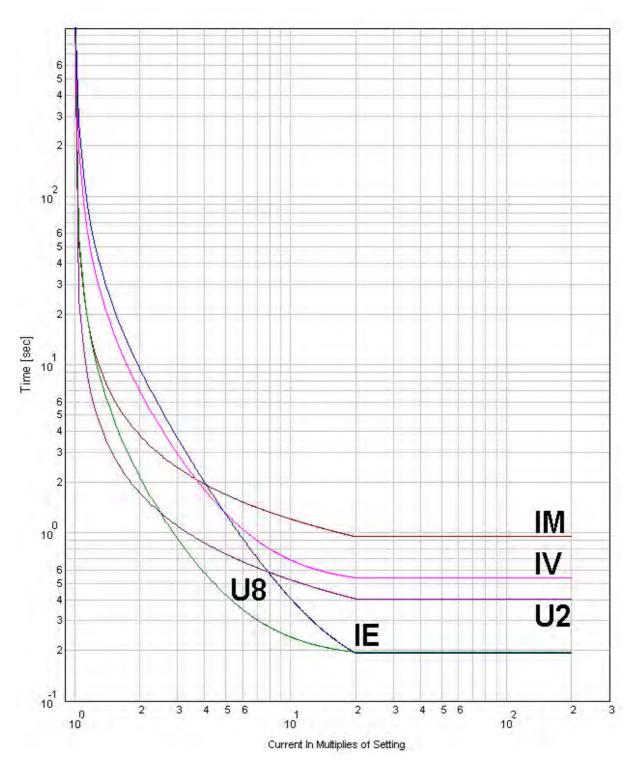

[Fig. A-1-5] V, W, Y, Z curves


[Fig. A-1-6] 1, 2, 3, 4 curves


[Fig. A-1-7] 5, 6, 7, 8 curves


[Fig. A-1-8] 8*, 9 , 11, 13 curves


[Fig. A-1-9] 14, 15, 16, 18 curves


[Fig. A-1-10] N1, N2, N3, N4 curves

[Fig. A-1-11] F, G, H, J curves

[Fig. A-1-12] 8+, 17, K(G), A* curves

[Fig. A-1-13] ANSI/IEEE curves (MI, VI, EI, CO2, CO8)

Appendix 2. DNP V3.0 PROTOCOL POINT INDEX

DNP3.0 PROTOCOL

Object Index Table

FTU-Recloser

Rev Date: 24-Feb-09

Revision Document: 3.3

Firmware: Hardware:

Object Index Table

Index	Description	Default	Object/Variation	Remark
No.		Class		

Binary Ir	Binary Inputs			
0	Switch Status	1	01/01,01/02,02/02	Closed = 1
1	Control Mode	1	01/01,01/02,02/02	Local = 1
2	Handle Locked	1	01/01,01/02,02/02	
3	Gas low	1	01/01,01/02,02/02	
4	Ext. AC Power Loss	1	01/01,01/02,02/02	
5	Battery Discharged	1	01/01,01/02,02/02	
6	Door Open	1	01/01,01/02,02/02	
7	DI Spare #1	1	01/01,01/02,02/02	Contact closed = 1
8	DI Spare #2	1	01/01,01/02,02/02	Contact closed = 1
9	DI Spare #3	1	01/01,01/02,02/02	Contact closed = 1
10	Fault Indicator (A)	3	01/01,01/02,02/02	
11	Fault Indicator (B)	3	01/01,01/02,02/02	
12	Fault Indicator (C)	3	01/01,01/02,02/02	
13	Fault Indicator (N)	3	01/01,01/02,02/02	
14	Fault Indicator (SEF)	3	01/01,01/02,02/02	
15	Reverse Direction Fault	3	01/01,01/02,02/02	
16	Open Line Detection A	3	01/01,01/02,02/02	
17	Open Line Detection B	3	01/01,01/02,02/02	
18	Open Line Detection C	3	01/01,01/02,02/02	
19	Open Line Detection R	3	01/01,01/02,02/02	

	T	I	T	
20	Open Line Detection S	3	01/01,01/02,02/02	
21	Open Line Detection T	3	01/01,01/02,02/02	
22	Sync. fail	3	01/01,01/02,02/02	
23	System Error	3	01/01,01/02,02/02	
24	Inrush Detected	3	01/01,01/02,02/02	
25	Reclosing Blocked	1	01/01,01/02,02/02	
26	Protection Blocked	1	01/01,01/02,02/02	
27	Ground Protection Blocked	1	01/01,01/02,02/02	
28	High Current Trip	3	01/01,01/02,02/02	
29	Sequence Lockout	3	01/01,01/02,02/02	
30	Reserved	0	01/01,01/02,02/02	
31	Under Frequency Op.	0	01/01,01/02,02/02	
Binary C	Dutputs			
0	Switch Open/Close Control	Pulse	12/01	CLOSE=Close, TRIP=Open
1	Battery Test	Pulse	12/01	CLOSE
2	DO spare Output	Pulse	12/01	CLOSE
3	Annunciator Manual Reset	Pulse	12/01	CLOSE
4	Reserved	Pulse	12/01	CLOSE
5	Enable/Disable Reclosing	Pulse	12/01	CLOSE=En.,TRIP=Dis.
6	Enable/Disable Protection	Pulse	12/01	CLOSE=En.,TRIP=Dis.
7	Enable/Disable Ground Protection	Pulse	12/01	CLOSE=En.,TRIP=Dis.
8	Reserved	Pulse	12/01	CLOSE
Analog I	nputs			
0	la RMS	2	30/02,30/04,32/02	А
1	lb RMS	2	30/02,30/04,32/02	A
2	Ic RMS	2	30/02,30/04,32/02	A
3	In RMS	0	30/02,30/04,32/02	A
4	Source side Va RMS	0	30/02,30/04,32/02	kV100
5	Source side Vb RMS	0	30/02,30/04,32/02	kV100
6	Source side Vc RMS	0	30/02,30/04,32/02	kV100
7	Source side Vo RMS	0	30/02,30/04,32/02	kV100
8	Load side Va RMS	0	30/02,30/04,32/02	kV100
9	Load side Vb RMS	0	30/02,30/04,32/02	kV100
		 		
10	Load side Vc RMS	0	30/02,30/04,32/02	kV100

12	KVAa	0	30/02,30/04,32/02	kVA
13	KVAb	0	30/02,30/04,32/02	kVA
14	KVAc	0	30/02,30/04,32/02	kVA
15	kVA3ph	0	30/02,30/04,32/02	kVA
16	KWa	0	30/02,30/04,32/02	kW
17	KWb	0	30/02,30/04,32/02	kW
18	KWc	0	30/02,30/04,32/02	kW
19	kW3ph	0	30/02,30/04,32/02	kW
20	KVARa	0	30/02,30/04,32/02	kVAR
21	KVARb	0	30/02,30/04,32/02	kVAR
22	KVARc	0	30/02,30/04,32/02	kVAR
23	kVAR3ph	0	30/02,30/04,32/02	kVAR
24	PFa	0	30/02,30/04,32/02	X100
25	PFb	0	30/02,30/04,32/02	X100
26	PFc	0	30/02,30/04,32/02	X100
27	PF3ph	0	30/02,30/04,32/02	X100
28	Va-Vr Phase Angle Diff	0	30/02,30/04,32/02	° 10
29	Frequency	0	30/02,30/04,32/02	HZ100
30	Reserved (Temperature)	0	30/02,30/04,32/02	
31	Reserved	0	30/02,30/04,32/02	
32	la phase angle	0	30/02,30/04	° 10
33	Ib phase angle	0	30/02,30/04	° 10
34	Ic phase angle	0	30/02,30/04	° 10
35	In phase angle	0	30/02,30/04	° 10
36	Source side Va phase angle	0	30/02,30/04	° 10
37	Source side Vb phase angle	0	30/02,30/04	° 10
38	Source side Vc phase angle	0	30/02,30/04	° 10
39	Source side Vo phase angle	0	30/02,30/04	° 10
40	Load side Va phase angle	0	30/02,30/04	° 10
41	Load side Vb phase angle	0	30/02,30/04	° 10
42	Load side Vc phase angle	0	30/02,30/04	° 10
43	Load side Vo phase angle	0	30/02,30/04	° 10
44	I1 RMS	0	30/02,30/04	A
45	I1 phase angle	0	30/02,30/04	° 10
46	I2 RMS	0	30/02,30/04	А

	T	1		<u></u>
47	I2 phase angle	0	30/02,30/04	° 10
48	Source side V1 RMS	0	30/02,30/04	kV100
49	Source side V1 phase angle	0	30/02,30/04	° 10
50	Source side V2 RMS	0	30/02,30/04	kV100
51	Source side V2 phase angle	0	30/02,30/04	° 10
52	Load side V1 RMS	0	30/02,30/04	А
53	Load side V1 phase angle	0	30/02,30/04	° 10
54	Load side V2 RMS	0	30/02,30/04	Α
55	Load side V2 phase angle	0	30/02,30/04	° 10
56	PFa lead	0	30/02,30/04	Leading = 1
57	PFb lead	0	30/02,30/04	Leading = 1
58	PFc lead	0	30/02,30/04	Leading = 1
59	PF3ph lead	0	30/02,30/04	Leading = 1
60	Last Fault la	3	30/02,30/04,32/04	А
61	Last Fault lb	3	30/02,30/04,32/04	Α
62	Last Fault Ic	3	30/02,30/04,32/04	Α
63	Last Fault In	3	30/02,30/04,32/04	А
64	Last Fault vo	0	30/02,30/04	Α
65	Reserved (Last Fault location)	0	30/02,30/04	km
66	Reserved (Last Fault I2t)	0	30/02,30/04	
67	Reserved	0	30/02,30/04	
68	Demand I la	2	30/02,30/04,32/04	А
69	Demand I lb	2	30/02,30/04,32/04	А
70	Demand I Ic	2	30/02,30/04,32/04	Α
71	Demand I In	2	30/02,30/04,32/04	А
72	Demand P kWa	2	30/02,30/04,32/04	kW
73	Demand P kWb	2	30/02,30/04,32/04	kW
74	Demand P kWc	2	30/02,30/04,32/04	kW
75	Demand P kW3ph	2	30/02,30/04,32/04	kW
76	Demand P kVARa	2	30/02,30/04,32/04	kVAR
77	Demand P kVARb	2	30/02,30/04,32/04	kVAR
78	Demand P kVARc	2	30/02,30/04,32/04	kVAR
79	Demand P kVAR3ph	2	30/02,30/04,32/04	kVAR
80	Max. I la	2	30/02,30/04,32/04	А
81	Max. I lb	2	30/02,30/04,32/04	А

82	Max. I Ic	2	30/02,30/04,32/04	А
83	Max. I In	2	30/02,30/04,32/04	А
84	Max. P1 kWa	2	30/02,30/04,32/04	kW
85	Max. P1 kWb	2	30/02,30/04,32/04	kW
86	Max. P1 kWc	2	30/02,30/04,32/04	kW
87	Max. P1 kW3ph	2	30/02,30/04,32/04	kW
88	Max. P1 kVARa	2	30/02,30/04,32/04	kVAR
89	Max. P1 kVARb	2	30/02,30/04,32/04	kVAR
90	Max. P1 kVARc	2	30/02,30/04,32/04	kVAR
91	Max. P1 kVAR3ph	2	30/02,30/04,32/04	kVAR
92	3-phase currents THD	0	30/02,30/04	%
93	Ia THD	0	30/02,30/04	%
94	Ib THD	0	30/02,30/04	%
95	Ic THD	0	30/02,30/04	%
96	Source side 3-phase voltages THD	0	30/02,30/04	%
97	Source side Va THD	0	30/02,30/04	%
98	Source side Vb THD	0	30/02,30/04	%
99	Source side Vc THD	0	30/02,30/04	%
100	Load side 3-phase voltages THD	0	30/02,30/04	%
101	Load side Va THD	0	30/02,30/04	%
102	Load side Vb THD	0	30/02,30/04	%
103	Load side Vc THD	0	30/02,30/04	%
104	la true RMS	0	30/02,30/04	А
105	Ib true RMS	0	30/02,30/04	А
106	Ic true RMS	0	30/02,30/04	А
107	Va true RMS	0	30/02,30/04	kV100
108	Vb true RMS	0	30/02,30/04	kV100
109	Vc true RMS	0	30/02,30/04	kV100
110	Vr true RMS	0	30/02,30/04	kV100
111	Vs true RMS	0	30/02,30/04	kV100
112	Vt true RMS	0	30/02,30/04	kV100
113	Ia 2 nd harmonic RMS	0	30/02,30/04	А
114	Ib 2 nd harmonic RMS	0	30/02,30/04	А
115	Ic 2 nd harmonic RMS	0	30/02,30/04	А
116	Ia 3 rd harmonic RMS	0	30/02,30/04	А
			•	

		<u> </u>		
117	Ib 3 rd harmonic RMS	0	30/02,30/04	Α
118	Ic 3 rd harmonic RMS	0	30/02,30/04	Α
119	Ia 4 th harmonic RMS	0	30/02,30/04	Α
120	Ib 4 th harmonic RMS	0	30/02,30/04	A
121	Ic 4 th harmonic RMS	0	30/02,30/04	А
122	Ia 5 th harmonic RMS	0	30/02,30/04	А
123	Ib 5 th harmonic RMS	0	30/02,30/04	А
124	Ic 5 th harmonic RMS	0	30/02,30/04	А
125	Ia 6 th harmonic RMS	0	30/02,30/04	A
126	Ib 6 th harmonic RMS	0	30/02,30/04	A
127	Ic 6 th harmonic RMS	0	30/02,30/04	A
128	Ia 7 th harmonic RMS	0	30/02,30/04	A
129	Ib 7 th harmonic RMS	0	30/02,30/04	Α
130	Ic 7 th harmonic RMS	0	30/02,30/04	A
131	Ia 8 th harmonic RMS	0	30/02,30/04	Α
132	Ib 8 th harmonic RMS	0	30/02,30/04	Α
133	Ic 8 th harmonic RMS	0	30/02,30/04	A
134	Source side Va 2 nd harmonic RMS	0	30/02,30/04	KV100
135	Source side Vb 2 nd harmonic RMS	0	30/02,30/04	KV100
136	Source side Vc 2 nd harmonic RMS	0	30/02,30/04	KV100
137	Source side Va 3 rd harmonic RMS	0	30/02,30/04	KV100
138	Source side Vb 3 rd harmonic RMS	0	30/02,30/04	KV100
139	Source side Vc 3 rd harmonic RMS	0	30/02,30/04	KV100
140	Source side Va 4 th harmonic RMS	0	30/02,30/04	KV100
141	Source side Vb 4 th harmonic RMS	0	30/02,30/04	KV100
142	Source side Vc 4 th harmonic RMS	0	30/02,30/04	KV100
143	Source side Va 5 th harmonic RMS	0	30/02,30/04	KV100
144	Source side Vb 5 th harmonic RMS	0	30/02,30/04	KV100
145	Source side Vc 5 th harmonic RMS	0	30/02,30/04	KV100
146	Source side Va 6 th harmonic RMS	0	30/02,30/04	KV100
147	Source side Vb 6 th harmonic RMS	0	30/02,30/04	KV100
148	Source side Vc 6 th harmonic RMS	0	30/02,30/04	KV100
149	Source side Va 7 th harmonic RMS	0	30/02,30/04	KV100
150	Source side Vb 7 th harmonic RMS	0	30/02,30/04	KV100
151	Source side Vc 7 th harmonic RMS	0	30/02,30/04	KV100

		T		
152	Source side Va 8 th harmonic RMS	0	30/02,30/04	KV100
153	Source side Vb 8 th harmonic RMS	0	30/02,30/04	KV100
154	Source side Vc 8 th harmonic RMS	0	30/02,30/04	KV100
155	Load side Va 2 nd harmonic RMS	0	30/02,30/04	KV100
156	Load side Vb 2 nd harmonic RMS	0	30/02,30/04	KV100
157	Load side Vc 2 nd harmonic RMS	0	30/02,30/04	KV100
158	Load side Va 3 rd harmonic RMS	0	30/02,30/04	KV100
159	Load side Vb 3 rd harmonic RMS	0	30/02,30/04	KV100
160	Load side Vc 3 rd harmonic RMS	0	30/02,30/04	KV100
161	Load side Va 4 th harmonic RMS	0	30/02,30/04	KV100
162	Load side Vb 4 th harmonic RMS	0	30/02,30/04	KV100
163	Load side Vc 4 th harmonic RMS	0	30/02,30/04	KV100
164	Load side Va 5 th harmonic RMS	0	30/02,30/04	KV100
165	Load side Vb 5 th harmonic RMS	0	30/02,30/04	KV100
166	Load side Vc 5 th harmonic RMS	0	30/02,30/04	KV100
167	Load side Va 6 th harmonic RMS	0	30/02,30/04	KV100
168	Load side Vb 6 th harmonic RMS	0	30/02,30/04	KV100
169	Load side Vc 6 th harmonic RMS	0	30/02,30/04	KV100
170	Load side Va 7 th harmonic RMS	0	30/02,30/04	KV100
171	Load side Vb 7 th harmonic RMS	0	30/02,30/04	KV100
172	Load side Vc 7 th harmonic RMS	0	30/02,30/04	KV100
173	Load side Va 8 th harmonic RMS	0	30/02,30/04	KV100
174	Load side Vb 8 th harmonic RMS	0	30/02,30/04	KV100
175	Load side Vc 8 th harmonic RMS	0	30/02,30/04	KV100
176	In THD	-	30/02,30/04	%
177	In true RMS	-	30/02,30/04	Α
178	In 2 nd harmonic RMS	-	30/02,30/04	A
179	In 3 rd harmonic RMS	-	30/02,30/04	Α
180	In 4 th harmonic RMS	-	30/02,30/04	Α
181	In 5 th harmonic RMS	-	30/02,30/04	A
182	In 6 th harmonic RMS	-	30/02,30/04	A
183	In 7 th harmonic RMS	-	30/02,30/04	Α
184	In 8 th harmonic RMS	-	30/02,30/04	A
Counters	3			
0	Restart Count	0	20/02,20/06	-

			T	
1	Switch Trip (or Open) Count	0	20/02,20/06	
2	All Faults Count	0	20/02,20/06	
3	A-phase Fault Count	0	20/02,20/06	
4	B-phase Fault Count	0	20/02,20/06	
5	C-phase Fault Count	0	20/02,20/06	
6	N-phase Fault Count	0	20/02,20/06	
7	kWattHour-a (Import)	0	20/02,20/06,22/08	kWh
8	kWattHour-b (Import)	0	20/02,20/06,22/08	kWh
9	kWattHour-c (Import)	0	20/02,20/06,22/08	kWh
10	kWattHour-3ph (Import)	0	20/02,20/06,22/08	kWh
11	kVarHour-a (Import)	0	20/02,20/06,22/08	kVarh
12	kVarHour-b (Import)	0	20/02,20/06,22/08	kVarh
13	kVarHour-c (Import)	0	20/02,20/06,22/08	kVarh
14	kVarHour-3ph (Import)	0	20/02,20/06,22/08	kVarh
15	kWattHour-a (Export)	0	20/02,20/06,22/08	kWh
16	kWattHour-b (Export)	0	20/02,20/06,22/08	kWh
17	kWattHour-c (Export)	0	20/02,20/06,22/08	kWh
18	kWattHour-3ph (Export)	0	20/02,20/06,22/08	kWh
19	kVarHour-a (Export)	0	20/02,20/06,22/08	kVarh
20	kVarHour-b (Export)	0	20/02,20/06,22/08	kVarh
21	kVarHour-c (Export)	0	20/02,20/06,22/08	kVarh
22	kVarHour-3ph (Export)	0	20/02,20/06,22/08	kVarh
Analog o	outputs			
Setting (Group1			
0	Phase Pickup Current		40/02,41/02	10~900A
1	Phase Fast TCC type		40/02,41/02	1~48
2	Phase Fast Time Multiplier		40/02,41/02	0.10~2.00,step:0.01
3	Phase Fast Time Adder		40/02,41/02	0.00~1.00sec,step:0.01
4	Phase Fast Min Response Time		40/02,41/02	0.00~1.00sec,step:0.01
5	Phase Fast Reset Type		40/02,41/02	RDMT(0)/RIDMT(1)
6	Phase Fast RDMT		40/02,41/02	0.00~100.00,step:0.01
7	Phase Delay TCC type		40/02,41/02	1~48
8	Phase Delay Time Multiplier		40/02,41/02	0.10~2.00,step:0.01
9	Phase Delay Time Adder		40/02,41/02	0.00~1.00sec,step:0.01
10	Phase Delay Min Response Time		40/02,41/02	0.00~1.00sec,step:0.01
	•	•	•	

11	Phase Delay Reset Type	40/02,41/02	RDMT(0)/RIDMT(1)
12	Phase Delay RDMT	40/02,41/02	0.00~100.00,step:0.01
13	Phase Definite Time O/C Active	40/02,41/02	ON(1),OFF(0)
14	Phase Definite Time O/C Level	40/02,41/02	50~10000A
15	Phase Definite Time O/C Response Time	40/02,41/02	0.00~1.00sec,step:0.01
16	Phase High Current Pickup	40/02,41/02	50~10000A
17	Phase High Current Time Adder	40/02,41/02	0.00~1.00sec,step:0.01
18	Phase Cold Load Pickup Multiplier	40/02,41/02	0~10
19	Phase Inrush Restraint	40/02,41/02	0(No),1(Yes)
20	Ground Pickup Current	40/02,41/02	5~900A
21	Ground Fast TCC type	40/02,41/02	1~48
22	Ground Fast Time Multiplier	40/02,41/02	0.10~2.00,step:0.01
23	Ground Fast Time Adder	40/02,41/02	0.00~1.00sec,step:0.01
24	Ground Fast Min Response Time	40/02,41/02	0.00~1.00sec,step:0.01
25	Ground Fast Reset Type	40/02,41/02	RDMT(0)/RIDMT(1)
26	Ground Fast RDMT	40/02,41/02	0.00~100.00,step:0.01
27	Ground Delay TCC type	40/02,41/02	1~48
28	Ground Delay Time Multiplier	40/02,41/02	0.10~2.00,step:0.01
29	Ground Delay Time Adder	40/02,41/02	0.00~1.00sec,step:0.01
30	Ground Delay Min Response Time	40/02,41/02	0.00~1.00sec,step:0.01
31	Ground Delay Reset Type	40/02,41/02	RDMT(0)/RIDMT(1)
32	Ground Delay RDMT	40/02,41/02	0.00~100.00,step:0.01
33	Ground Definite Time O/C Active	40/02,41/02	ON(1),OFF(0)
34	Ground Definite Time O/C Level	40/02,41/02	50~10000A
35	Ground Definite Time Response Time	40/02,41/02	50~10000A
36	Ground High Current Pickup	40/02,41/02	50~10000A
37	Ground High Current Time Adder	40/02,41/02	0.00~1.00,step:0.01
38	Ground Cold Load Pickup Multiplier	40/02,41/02	0~10
39	Ground Inrush Restraint	40/02,41/02	0(No),1(Yes)
40	SEF -Pickup Current(Io)	40/02,41/02	2~20A
41	SEF -Pickup Voltage(Vo)	40/02,41/02	10~80%
42	SEF -Max. Torque Angle	40/02,41/02	0~(-)90,step:15 DEG
43	SEF -Detection Time	40/02,41/02	0.1~30.0 step:0.1 Sec
44	SEF -Inrush restraint	40/02,41/02	No(0),Yes(1)
45	SEF - On/Off	40/02,41/02	0(Off),1(On)
		T.	1

46	Inrush restraint-2 nd harmonic level	40/02,41/02	5~50%
47	Inrush restraint-Detection Time	40/02,41/02	0.02~1.00,step:0.01
48	Inrush restraint -On/Off	40/02,41/02	0(Off),1(On)
49	Oper. To Lockout Phase	40/02,41/02	1~4
50	Oper. To Lockout Ground	40/02,41/02	1~4
51	Oper. To Lockout SEF	40/02,41/02	1~4
52	Oper. Fast Curve Phase	40/02,41/02	0~4
53	Oper. Fast Curve Ground	40/02,41/02	0~4
54	High Current Phase Active	40/02,41/02	0~4
55	High Current Ground Active	40/02,41/02	0~4
56	Reclose Interval 1 st	40/02,41/02	0.5~60.0sec, step:0.1
57	Reclose Interval 2 nd	40/02,41/02	1~60sec
58	Reclose Interval 3 rd	40/02,41/02	1~60sec
59	Reclose Interval 4 th	40/02,41/02	1~60sec
60	Reset Time	40/02,41/02	3~180sec
61	Single Shot Time	40/02,41/02	0~180sec [3s]
62	Cold Load Pickup Restore Time	40/02,41/02	0.00~30.00sec step:0.01
63	Cold Load Duration	40/02,41/02	0.00~60.00sec step:0.01
64	Seq. Coordination Active	40/02,41/02	ON(1),OFF(0)
UNDER	VOLTAGE		
65	UV -Pickup	40/02,41/02	2.8~21.9kV step:0.1 [8.0kV]
66	Reserved	40/02,41/02	
67	UV -Delay Time	40/02,41/02	0.0~200.0sec step:0.1
68	UV -On/Off	40/02,41/02	0(OFF),1(LO),2(NR)
PHASE	LOSS		
65	Phase Loss -Volt On level	40/02,41/02	50~90,step:5%
66	Phase Loss -Volt Off level	40/02,41/02	35~75,step:5%
67	Phase Loss -Delay Time	40/02,41/02	0.1~30.0sec step:0.1
68	Phase Loss -On/Off	40/02,41/02	0(Off),1(On)
69	Sync Fail-Phase difference	40/02,41/02	5~60DEG
70	Sync Fail-Delay Time	40/02,41/02	0.1~30.0sec step:0.1
71	Sync Fail -On/Off	40/02,41/02	0(Off),1(On)
72	UFR Frequency Level	40/02,41/02	47.00~59.98Hz,step:0,01
73	UFR Delay Time	40/02,41/02	0.1~30.0sec step:0.1
74	UFR On/Off	40/02,41/02	0(Off),1(On)

			0(OFF),1(LO),2(NR) - Option
Setting	Group2		
75	Phase Pickup Current	40/02,41/02	10~900A
76	Phase Fast TCC type	40/02,41/02	1~48
77	Phase Fast Time Multiplier	40/02,41/02	0.10~2.00,step:0.01
78	Phase Fast Time Adder	40/02,41/02	0.00~1.00sec,step:0.01
79	Phase Fast Min Response Time	40/02,41/02	0.00~1.00sec,step:0.01
80	Phase Fast Reset Type	40/02,41/02	RDMT(0)/RIDMT(1)
81	Phase Fast RDMT	40/02,41/02	0.00~100.00,step:0.01
82	Phase Delay TCC type	40/02,41/02	1~48
83	Phase Delay Time Multiplier	40/02,41/02	0.10~2.00,step:0.01
84	Phase Delay Time Adder	40/02,41/02	0.00~1.00sec,step:0.01
85	Phase Delay Min Response Time	40/02,41/02	0.00~1.00sec,step:0.01
86	Phase Delay Reset Type	40/02,41/02	RDMT(0)/RIDMT(1)
87	Phase Delay RDMT	40/02,41/02	0.00~100.00,step:0.01
88	Phase Definite Time O/C Active	40/02,41/02	ON(1),OFF(0)
89	Phase Definite Time O/C Level	40/02,41/02	50~10000A
90	Phase Definite Time O/C Response Time	40/02,41/02	0.00~1.00sec,step:0.01
91	Phase High Current Pickup	40/02,41/02	50~10000A
92	Phase High Current Time Adder	40/02,41/02	0.00~1.00sec,step:0.01
93	Phase Cold Load Pickup Multiplier	40/02,41/02	0~10
94	Phase Inrush Restraint	40/02,41/02	0(No),1(Yes)
95	Ground Pickup Current	40/02,41/02	5~900A
96	Ground Fast TCC type	40/02,41/02	1~48
97	Ground Fast Time Multiplier	40/02,41/02	0.10~2.00,step:0.01
98	Ground Fast Time Adder	40/02,41/02	0.00~1.00sec,step:0.01
99	Ground Fast Min Response Time	40/02,41/02	0.00~1.00sec,step:0.01
100	Ground Fast Reset Type	40/02,41/02	RDMT(0)/RIDMT(1)
101	Ground Fast RDMT	40/02,41/02	0.00~100.00,step:0.01
102	Ground Delay TCC type	40/02,41/02	1~48
103	Ground Delay Time Multiplier	40/02,41/02	0.10~2.00,step:0.01
104	Ground Delay Time Adder	40/02,41/02	0.00~1.00sec,step:0.01
105	Ground Delay Min Response Time	40/02,41/02	0.00~1.00sec,step:0.01
106	Ground Delay Reset Type	40/02,41/02	RDMT(0)/RIDMT(1)
107	Ground Delay RDMT	40/02,41/02	0.00~100.00,step:0.01

108	Ground Definite Time O/C Active	40/02,41/02	ON(1),OFF(0)
109	Ground Definite Time O/C Level	40/02,41/02	50~10000A
110	Ground Definite Time Response Time	40/02,41/02	50~10000A
111	Ground High Current Pickup	40/02,41/02	50~10000A
112	Ground High Current Time Adder	40/02,41/02	0.00~1.00,step:0.01
113	Ground Cold Load Pickup Multiplier	40/02,41/02	0~10
114	Ground Inrush Restraint	40/02,41/02	0(No),1(Yes)
115	SEF -Pickup Current(Io)	40/02,41/02	2~20A
116	SEF -Pickup Voltage(Vo)	40/02,41/02	10~80%
117	SEF -Max. Torque Angle	40/02,41/02	0~(-)90,step:15 DEG
118	SEF -Detection Time	40/02,41/02	0.1~30.0 step:0.1 Sec
119	SEF -Inrush restraint	40/02,41/02	No(0),Yes(1)
120	SEF - On/Off	40/02,41/02	0(Off),1(On)
121	Inrush restraint-2 nd harmonic level	40/02,41/02	5~50%
122	Inrush restraint-Detection Time	40/02,41/02	0.02~1.00,step:0.01
123	Inrush restraint -On/Off	40/02,41/02	0(Off),1(On)
124	Oper. To Lockout Phase	40/02,41/02	1~4
125	Oper. To Lockout Ground	40/02,41/02	1~4
126	Oper. To Lockout SEF	40/02,41/02	1~4
127	Oper. Fast Curve Phase	40/02,41/02	0~4
128	Oper. Fast Curve Ground	40/02,41/02	0~4
129	High Current Phase Active	40/02,41/02	0~4
130	High Current Ground Active	40/02,41/02	0~4
131	Reclose Interval 1 st	40/02,41/02	0.5~60.0sec, step:0.1
132	Reclose Interval 2 nd	40/02,41/02	1~60sec
133	Reclose Interval 3 rd	40/02,41/02	1~60sec
134	Reclose Interval 4 th	40/02,41/02	1~60sec
135	Reset Time	40/02,41/02	3~180sec
136	Single Shot Time	40/02,41/02	0~180sec [3s]
137	Cold Load Pickup Restore Time	40/02,41/02	0.00~30.00sec step:0.01
138	Cold Load Duration	40/02,41/02	0.00~60.00sec step:0.01
139	Seq. Coordination Active	40/02,41/02	ON(1),OFF(0)
UNDER	VOLTAGE		
140	UV -Pickup	40/02,41/02	2.8~21.9kV step:0.1 [8.0kV]
141	Reserved	40/02,41/02	

	,		1
142	UV -Delay Time	40/02,41/02	0.0~200.0sec step:0.1
143	UV -On/Off	40/02,41/02	0(OFF),1(LO),2(NR)
PHASE	LOSS		
140	Phase Loss -Volt On level	40/02,41/02	50~90,step:5%
141	Phase Loss -Volt Off level	40/02,41/02	35~75,step:5%
142	Phase Loss -Delay Time	40/02,41/02	0.1~30.0sec step:0.1
143	Phase Loss -On/Off	40/02,41/02	0(Off),1(On)
144	Sync Fail-Phase difference	40/02,41/02	5~60DEG
145	Sync Fail-Delay Time	40/02,41/02	0.1~30.0sec step:0.1
146	Sync Fail -On/Off	40/02,41/02	0(Off),1(On)
147	UFR Frequency Level	40/02,41/02	47.00~59.98Hz,step:0,01
148	UFR Delay Time	40/02,41/02	0.1~30.0sec step:0.1
149	UFR On/Off	40/02,41/02	0(Off),1(On)
			0(OFF),1(LO),2(NR) - Option
Setting (Group3		
150	Phase Pickup Current	40/02,41/02	10~900A
151	Phase Fast TCC type	40/02,41/02	1~48
152	Phase Fast Time Multiplier	40/02,41/02	0.10~2.00,step:0.01
153	Phase Fast Time Adder	40/02,41/02	0.00~1.00sec,step:0.01
154	Phase Fast Min Response Time	40/02,41/02	0.00~1.00sec,step:0.01
155	Phase Fast Reset Type	40/02,41/02	RDMT(0)/RIDMT(1)
156	Phase Fast RDMT	40/02,41/02	0.00~100.00,step:0.01
157	Phase Delay TCC type	40/02,41/02	1~48
158	Phase Delay Time Multiplier	40/02,41/02	0.10~2.00,step:0.01
159	Phase Delay Time Adder	40/02,41/02	0.00~1.00sec,step:0.01
160	Phase Delay Min Response Time	40/02,41/02	0.00~1.00sec,step:0.01
161	Phase Delay Reset Type	40/02,41/02	RDMT(0)/RIDMT(1)
162	Phase Delay RDMT	40/02,41/02	0.00~100.00,step:0.01
163	Phase Definite Time O/C Active	40/02,41/02	ON(1),OFF(0)
164	Phase Definite Time O/C Level	40/02,41/02	50~10000A
165	Phase Definite Time O/C Response Time	40/02,41/02	0.00~1.00sec,step:0.01
166	Phase High Current Pickup	40/02,41/02	50~10000A
167	Phase High Current Time Adder	40/02,41/02	0.00~1.00sec,step:0.01
168	Phase Cold Load Pickup Multiplier	40/02,41/02	0~10
169	Phase Inrush Restraint	40/02,41/02	0(No),1(Yes)

170	Ground Pickup Current	40/02,41/02	5~900A
171	Ground Fast TCC type	40/02,41/02	1~48
172	Ground Fast Time Multiplier	40/02,41/02	0.10~2.00,step:0.01
173	Ground Fast Time Adder	40/02,41/02	0.00~1.00sec,step:0.01
174	Ground Fast Min Response Time	40/02,41/02	0.00~1.00sec,step:0.01
175	Ground Fast Reset Type	40/02,41/02	RDMT(0)/RIDMT(1)
176	Ground Fast RDMT	40/02,41/02	0.00~100.00,step:0.01
177	Ground Delay TCC type	40/02,41/02	1~48
178	Ground Delay Time Multiplier	40/02,41/02	0.10~2.00,step:0.01
179	Ground Delay Time Adder	40/02,41/02	0.00~1.00sec,step:0.01
180	Ground Delay Min Response Time	40/02,41/02	0.00~1.00sec,step:0.01
181	Ground Delay Reset Type	40/02,41/02	RDMT(0)/RIDMT(1)
182	Ground Delay RDMT	40/02,41/02	0.00~100.00,step:0.01
183	Ground Definite Time O/C Active	40/02,41/02	ON(1),OFF(0)
184	Ground Definite Time O/C Level	40/02,41/02	50~10000A
185	Ground Definite Time Response Time	40/02,41/02	50~10000A
186	Ground High Current Pickup	40/02,41/02	50~10000A
187	Ground High Current Time Adder	40/02,41/02	0.00~1.00,step:0.01
188	Ground Cold Load Pickup Multiplier	40/02,41/02	0~10
189	Ground Inrush Restraint	40/02,41/02	0(No),1(Yes)
190	SEF -Pickup Current(Io)	40/02,41/02	2~20A
191	SEF -Pickup Voltage(Vo)	40/02,41/02	10~80%
192	SEF -Max. Torque Angle	40/02,41/02	0~(-)90,step:15 DEG
193	SEF -Detection Time	40/02,41/02	0.1~30.0 step:0.1 Sec
194	SEF -Inrush restraint	40/02,41/02	No(0),Yes(1)
195	SEF - On/Off	40/02,41/02	0(Off),1(On)
196	Inrush restraint-2 nd harmonic level	40/02,41/02	5~50%
197	Inrush restraint-Detection Time	40/02,41/02	0.02~1.00,step:0.01
198	Inrush restraint -On/Off	40/02,41/02	0(Off),1(On)
199	Oper. To Lockout Phase	40/02,41/02	1~4
200	Oper. To Lockout Ground	40/02,41/02	1~4
201	Oper. To Lockout SEF	40/02,41/02	1~4
202	Oper. Fast Curve Phase	40/02,41/02	0~4
203	Oper. Fast Curve Ground	40/02,41/02	0~4
204	High Current Phase Active	40/02,41/02	0~4

205	High Current Ground Active	40/02,41/02	0~4
206	Reclose Interval 1 st	40/02,41/02	0.5~60.0sec, step:0.1
207	Reclose Interval 2 nd	40/02,41/02	1~60sec
208	Reclose Interval 3 rd	40/02,41/02	1~60sec
209	Reclose Interval 4 th	40/02,41/02	1~60sec
210	Reset Time	40/02,41/02	3~180sec
211	Single Shot Time	40/02,41/02	0~180sec [3s]
212	Cold Load Pickup Restore Time	40/02,41/02	0.00~30.00sec step:0.01
213	Cold Load Duration	40/02,41/02	0.00~60.00sec step:0.01
214	Seq. Coordination Active	40/02,41/02	ON(1),OFF(0)
UNDER	VOLTAGE		
215	UV -Pickup	40/02,41/02	2.8~21.9kV step:0.1 [8.0kV]
216	Reserved	40/02,41/02	
217	UV -Delay Time	40/02,41/02	0.0~200.0sec step:0.1
218	UV -On/Off	40/02,41/02	0(OFF),1(LO),2(NR)
PHASE	LOSS		
215	Phase Loss -Volt On level	40/02,41/02	50~90,step:5%
216	Phase Loss -Volt Off level	40/02,41/02	35~75,step:5%
217	Phase Loss -Delay Time	40/02,41/02	0.1~30.0sec step:0.1
218	Phase Loss -On/Off	40/02,41/02	0(Off),1(On)
219	Sync Fail-Phase difference	40/02,41/02	5~60DEG
220	Sync Fail-Delay Time	40/02,41/02	0.1~30.0sec step:0.1
221	Sync Fail -On/Off	40/02,41/02	0(Off),1(On)
222	UFR Frequency Level	40/02,41/02	47.00~59.98Hz,step:0,01
223	UFR Delay Time	40/02,41/02	0.1~30.0sec step:0.1
224	UFR On/Off	40/02,41/02	0(Off),1(On)
			0(OFF),1(LO),2(NR) - Option
Setting	Group4		
225	Phase Pickup Current	40/02,41/02	10~900A
226	Phase Fast TCC type	40/02,41/02	1~48
227	Phase Fast Time Multiplier	40/02,41/02	0.10~2.00,step:0.01
228	Phase Fast Time Adder	40/02,41/02	0.00~1.00sec,step:0.01
229	Phase Fast Min Response Time	40/02,41/02	0.00~1.00sec,step:0.01
230	Phase Fast Reset Type	40/02,41/02	RDMT(0)/RIDMT(1)
231	Phase Fast RDMT	40/02,41/02	0.00~100.00,step:0.01
	ı	1	1

232	Phase Delay TCC type	40/02,41/02	1~48
233	Phase Delay Time Multiplier	40/02,41/02	0.10~2.00,step:0.01
234	Phase Delay Time Adder	40/02,41/02	0.00~1.00sec,step:0.01
235	Phase Delay Min Response Time	40/02,41/02	0.00~1.00sec,step:0.01
236	Phase Delay Reset Type	40/02,41/02	RDMT(0)/RIDMT(1)
237	Phase Delay RDMT	40/02,41/02	0.00~100.00,step:0.01
238	Phase Definite Time O/C Active	40/02,41/02	ON(1),OFF(0)
239	Phase Definite Time O/C Level	40/02,41/02	50~10000A
240	Phase Definite Time O/C Response Time	40/02,41/02	0.00~1.00sec,step:0.01
241	Phase High Current Pickup	40/02,41/02	50~10000A
242	Phase High Current Time Adder	40/02,41/02	0.00~1.00sec,step:0.01
243	Phase Cold Load Pickup Multiplier	40/02,41/02	0~10
244	Phase Inrush Restraint	40/02,41/02	0(No),1(Yes)
245	Ground Pickup Current	40/02,41/02	5~900A
246	Ground Fast TCC type	40/02,41/02	1~48
247	Ground Fast Time Multiplier	40/02,41/02	0.10~2.00,step:0.01
248	Ground Fast Time Adder	40/02,41/02	0.00~1.00sec,step:0.01
249	Ground Fast Min Response Time	40/02,41/02	0.00~1.00sec,step:0.01
250	Ground Fast Reset Type	40/02,41/02	RDMT(0)/RIDMT(1)
251	Ground Fast RDMT	40/02,41/02	0.00~100.00,step:0.01
252	Ground Delay TCC type	40/02,41/02	1~48
253	Ground Delay Time Multiplier	40/02,41/02	0.10~2.00,step:0.01
254	Ground Delay Time Adder	40/02,41/02	0.00~1.00sec,step:0.01
255	Ground Delay Min Response Time	40/02,41/02	0.00~1.00sec,step:0.01
256	Ground Delay Reset Type	40/02,41/02	RDMT(0)/RIDMT(1)
257	Ground Delay RDMT	40/02,41/02	0.00~100.00,step:0.01
258	Ground Definite Time O/C Active	40/02,41/02	ON(1),OFF(0)
259	Ground Definite Time O/C Level	40/02,41/02	50~10000A
260	Ground Definite Time Response Time	40/02,41/02	50~10000A
261	Ground High Current Pickup	40/02,41/02	50~10000A
262	Ground High Current Time Adder	40/02,41/02	0.00~1.00,step:0.01
263	Ground Cold Load Pickup Multiplier	40/02,41/02	0~10
264	Ground Inrush Restraint	40/02,41/02	0(No),1(Yes)
265	SEF -Pickup Current(Io)	40/02,41/02	2~20A
266	SEF -Pickup Voltage(Vo)	40/02,41/02	10~80%
		1	1

_	T		
267	SEF -Max. Torque Angle	40/02,41/02	0~(-)90,step:15 DEG
268	SEF -Detection Time	40/02,41/02	0.1~30.0 step:0.1 Sec
269	SEF -Inrush restraint	40/02,41/02	No(0),Yes(1)
270	SEF - On/Off	40/02,41/02	0(Off),1(On)
271	Inrush restraint-2 nd harmonic level	40/02,41/02	5~50%
272	Inrush restraint-Detection Time	40/02,41/02	0.02~1.00,step:0.01
273	Inrush restraint -On/Off	40/02,41/02	0(Off),1(On)
274	Oper. To Lockout Phase	40/02,41/02	1~4
275	Oper. To Lockout Ground	40/02,41/02	1~4
276	Oper. To Lockout SEF	40/02,41/02	1~4
277	Oper. Fast Curve Phase	40/02,41/02	0~4
278	Oper. Fast Curve Ground	40/02,41/02	0~4
279	High Current Phase Active	40/02,41/02	0~4
280	High Current Ground Active	40/02,41/02	0~4
281	Reclose Interval 1 st	40/02,41/02	0.5~60.0sec, step:0.1
282	Reclose Interval 2 nd	40/02,41/02	1~60sec
283	Reclose Interval 3 rd	40/02,41/02	1~60sec
284	Reclose Interval 4 th	40/02,41/02	1~60sec
285	Reset Time	40/02,41/02	3~180sec
286	Single Shot Time	40/02,41/02	0~180sec [3s]
287	Cold Load Pickup Restore Time	40/02,41/02	0.00~30.00sec step:0.01
288	Cold Load Duration	40/02,41/02	0.00~60.00sec step:0.01
289	Seq. Coordination Active	40/02,41/02	ON(1),OFF(0)
UNDER	VOLTAGE		
290	UV -Pickup	40/02,41/02	2.8~21.9kV step:0.1 [8.0kV]
291	Reserved	40/02,41/02	
292	UV -Delay Time	40/02,41/02	0.0~200.0sec step:0.1
293	UV -On/Off	40/02,41/02	0(OFF),1(LO),2(NR)
PHASE	LOSS		
290	Phase Loss -Volt On level	40/02,41/02	50~90,step:5%
291	Phase Loss -Volt Off level	40/02,41/02	35~75,step:5%
292	Phase Loss -Delay Time	40/02,41/02	0.1~30.0sec step:0.1
293	Phase Loss -On/Off	40/02,41/02	0(Off),1(On)
294	Sync Fail-Phase difference	40/02,41/02	5~60DEG
295	Sync Fail-Delay Time	40/02,41/02	0.1~30.0sec step:0.1

296	Sync Fail -On/Off	40/02,41/02	0(Off),1(On)
297	UFR Frequency Level	40/02,41/02	47.00~59.98Hz,step:0,01
298	UFR Delay Time	40/02,41/02	0.1~30.0sec step:0.1
229	UFR On/Off	40/02,41/02	0(Off),1(On)
			0(OFF),1(LO),2(NR) - Option
Commo	on Setting		
300	Normal power flow setting group	40/02,41/02	1~4
301	Reserved	40/02,41/02	
302	Reserved	40/02,41/02	
303	Reserved	40/02,41/02	
VOC Se	etting		
304	AI.0 VOC	40/02,41/02	0~50%
305	AI.1 VOC	40/02,41/02	0~50%
306	AI.2 VOC	40/02,41/02	0~50%
307	AI.3 VOC	40/02,41/02	0~50%
308	AI.4 VOC	40/02,41/02	0~50%
309	AI.5 VOC	40/02,41/02	0~50%
310	AI.6 VOC	40/02,41/02	0~50%
311	AI.7 VOC	40/02,41/02	0~50%
312	AI.8 VOC	40/02,41/02	0~50%
313	AI.9 VOC	40/02,41/02	0~50%
314	AI.10 VOC	40/02,41/02	0~50%
315	AI.11 VOC	40/02,41/02	0~50%
316	AI.12 VOC	40/02,41/02	0~50%
317	AI.13 VOC	40/02,41/02	0~50%
318	AI.14 VOC	40/02,41/02	0~50%
319	AI.15 VOC	40/02,41/02	0~50%
320	AI.16 VOC	40/02,41/02	0~50%
321	AI.17 VOC	40/02,41/02	0~50%
322	AI.18 VOC	40/02,41/02	0~50%
323	AI.19 VOC	40/02,41/02	0~50%
324	AI.20 VOC	40/02,41/02	0~50%
325	Al.21 VOC	40/02,41/02	0~50%
326	AI.22 VOC	40/02,41/02	0~50%
327	AI.23 VOC	40/02,41/02	0~50%

		10/5	
328	Al.24 VOC	40/02,41/02	0~50%
329	AI.25 VOC	40/02,41/02	0~50%
330	AI.26 VOC	40/02,41/02	0~50%
331	AI.27 VOC	40/02,41/02	0~50%
332	AI.28 VOC	40/02,41/02	0~50%
333	AI.29 VOC	40/02,41/02	0~50%
334	AI.30 VOC	40/02,41/02	0~50%
335	AI.31 VOC	40/02,41/02	0~50%
336	AI.0 VOC Limit	40/02,41/02	0~65535
337	Al.1 VOC Limit	40/02,41/02	0~65535
338	AI.2 VOC Limit	40/02,41/02	0~65535
339	AI.3 VOC Limit	40/02,41/02	0~65535
340	AI.4 VOC Limit	40/02,41/02	0~65535
341	AI.5 VOC Limit	40/02,41/02	0~65535
342	AI.6 VOC Limit	40/02,41/02	0~65535
343	AI.7 VOC Limit	40/02,41/02	0~65535
344	AI.8 VOC Limit	40/02,41/02	0~65535
345	AI.9 VOC Limit	40/02,41/02	0~65535
346	AI.10 VOC Limit	40/02,41/02	0~65535
347	AI.11 VOC Limit	40/02,41/02	0~65535
348	AI.12 VOC Limit	40/02,41/02	0~65535
349	AI.13 VOC Limit	40/02,41/02	0~65535
350	AI.14 VOC Limit	40/02,41/02	0~65535
351	AI.15 VOC Limit	40/02,41/02	0~65535
352	AI.16 VOC Limit	40/02,41/02	0~65535
353	AI.17 VOC Limit	40/02,41/02	0~65535
354	AI.18 VOC Limit	40/02,41/02	0~65535
355	AI.19 VOC Limit	40/02,41/02	0~65535
356	AI.20 VOC Limit	40/02,41/02	0~65535
357	Al.21 VOC Limit	40/02,41/02	0~65535
358	AI.22 VOC Limit	40/02,41/02	0~65535
359	AI.23 VOC Limit	40/02,41/02	0~65535
360	AI.24 VOC Limit	40/02,41/02	0~65535
361	AI.25 VOC Limit	40/02,41/02	0~65535
362	AI.26 VOC Limit	40/02,41/02	0~65535

363	AI.27 VOC Limit	4	40/02,41/02	0~65535
364	AI.28 VOC Limit	4	40/02,41/02	0~65535
365	AI.29 VOC Limit	4	40/02,41/02	0~65535
366	AI.30 VOC Limit	4	40/02,41/02	0~65535
367	AI.31 VOC Limit	4	40/02,41/02	0~65535
368	CNT.0 VOC	4	40/02,41/02	0~65535
369	CNT.1 VOC	4	40/02,41/02	0~65535
370	CNT.2 VOC	4	40/02,41/02	0~65535
371	CNT.3 VOC	4	40/02,41/02	0~65535
372	CNT.4 VOC	4	40/02,41/02	0~65535
373	CNT.5 VOC	4	40/02,41/02	0~65535
374	CNT.6 VOC	4	40/02,41/02	0~65535
375	CNT.7 VOC	4	40/02,41/02	0~65535
376	CNT.8 VOC	4	40/02,41/02	0~65535
377	CNT.9 VOC	4	40/02,41/02	0~65535
378	CNT.10 VOC	4	40/02,41/02	0~65535
379	CNT.11 VOC	4	40/02,41/02	0~65535
380	CNT.12 VOC	4	40/02,41/02	0~65535
381	CNT.13 VOC	4	40/02,41/02	0~65535
382	CNT.14 VOC	4	40/02,41/02	0~65535
383	CNT.15 VOC	4	40/02,41/02	0~65535
384	CNT.16 VOC	4	40/02,41/02	0~65535
385	CNT.17 VOC	4	40/02,41/02	0~65535
386	CNT.18 VOC	4	40/02,41/02	0~65535
387	CNT.19 VOC	4	40/02,41/02	0~65535
388	CNT.20 VOC	4	40/02,41/02	0~65535
389	CNT.21 VOC	4	40/02,41/02	0~65535
390	CNT.22 VOC	4	40/02,41/02	0~65535
File Trai	nsfer			
	"EV_BIO"	-	70/01	I/O Event history
	"EV_FUNC"	-	70/01	Function Event History
	"EV_SYS"		70/01	System Event History
	"EV_FAULT"		70/01	Fault Event History
	"EV_DMD_I"	-	70/01	Demand I History
	"EV_DMD_P"		70/01	Demand P History

102 / 145 www.jinkwang.co.kr

	"EV_MAX_I"	70/01	Max. I History
	"EV_MAX_P"	70/01	Max. P History
	"FI_WAVE_0"	70/01	Fault Waveform (Recent)
	"FI_WAVE_1"	70/01	Fault Waveform
	"FI_WAVE_2"	70/01	Fault Waveform
	"FI_WAVE_3"	70/01	Fault Waveform (Oldest)
I/O Even	t File Record Format		
	I/O Event ID		Unsigned short
	I/O Event Date & Time		DNP Time
	I/O Event Status Flags		Unsigned short
Function	Event File Record Format		
	Function Event ID		Unsigned short
	Function Event Date & Time		DNP Time
	Function Event Status Flags		Unsigned short
System I	Event File Record Format		
	System Event ID		Unsigned short
	System Event Date & Time		DNP Time
	System Event Status Flags		Unsigned short
Fault Eve	ent File Record Format		
	Fault Event Date & Time		DNP Time
	Fault Event Status		Unsigned short
	Fault Event la		Unsigned short
	Fault Event lb		Unsigned short
	Fault Event Ic		Unsigned short
	Fault Event In		Unsigned short
	Fault Event Vo		Unsigned short
	Reserved		Unsigned short
	Reserved		Unsigned short
	Reserved		Unsigned short
Demand	I Event File Record Format		
	Demand I Date & Time		DNP Time
	Demand I la		Unsigned short
	5		Unsigned short
	Demand I lb		•
	Demand I Ic		Unsigned short

Demand P Event File Record Format		
Demand P Date & Time		DNP Time
Demand P kWa		short
Demand P kWb		short
Demand P kWc		short
Demand P kW3ph		short
Demand P kVARa		short
Demand P kVARb		short
Demand P kVARc		short
Demand P kVAR3ph		short
Max. I Event File Record Format		
Max. I Date & Time		DNP Time
Max. I la		Unsigned short
Max. I lb		Unsigned short
Max. I Ic		Unsigned short
Max. I In		Unsigned short
Max. P Event File Record Format		
Max. P Date & Time		DNP Time
Max. P kWa		short
Max. P kWb		short
Max. P kWc		short
Max. P kW3ph		short
Max. P kVARa		short
Max. P kVARb		short
Max. P kVARc		short
Max. P kVAR3ph		short
Sample waveform File Record Format		
Sample Waveform Date & Time	Record	DNP Time
Fault Status	0	Unsigned short
Sampling Rate = 32		Unsigned short
Reserved		10 Bytes
Sample Op. Status[]	Record	Unsigned short
Sample Ia[0]	1~320	-32768 ~ +32767
Sample lb[0]		-32768 ~ +32767
Sample Ic[0]		-32768 ~ +32767

Sample In[0]	-32768 ~ +32767
Sample Va[0]	-32768 ~ +32767
Sample Vb[0]	-32768 ~ +32767
Sample Vc[0]	-32768 ~ +32767
Sample Vo[0]	-32768 ~ +32767
Reserved	Unsigned short

Appendix 3. DNP V3.0 DEVICE PROFILE

& Implementation Table (V3.1)

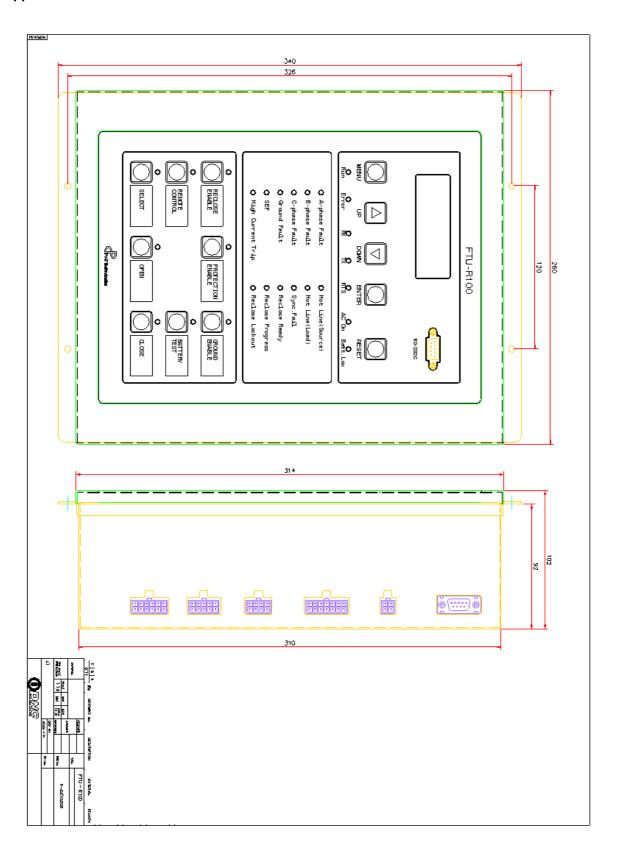
DNP V3.00 DEVICE PROFILE DOCUMENT This document must be accompanied by a table having the following headings: Object Group Request Function Codes Response Function Codes Object Variation Request Qualifiers Response Qualifiers Object Name (optional) Vendor Name: P&C Technologies CO.,LTD		
Device Name: FTU-R100	<u> </u>	
Highest DNP Level Supported:	Device Function:	
For Requests Level 2	Master ■ <u>Slave</u>	
For Responses Level 2		
Notable objects, functions, and/or qualifiers supported in addition to the Highest DNP Levels Supported (the complete list is described in the attached table): Supports Enabling and Disabling of Unsolicited Report On a Class basis.		
Maximum Data Link Frame Size (octets):	Maximum Application Fragment Size (octets):	
Transmitted292	Transmitted _2048_ (if>2048,must	
Received (must be 292)	be configurable) Received _2048_ (must be >= 249)	
Maximum Data Link Re-tries:	Maximum Application Layer Re-tries:	
None Fixed at ■ Configurable, range0_ to2	None ■ Configurable, range _0_ to2_ (Fixed is not permitted)	
Requires Data Link Layer Confirmation:		
Never Always Sometimes If 'Sometimes', when?		

■ Configurable If 'Configurable', how?	By Setting	
Requires Application Layer Confirmation:		
Never Always (not recommended) ■ When reporting Event Data (Slave devices only) When sending multi-fragment responses (Slave devices only)		
Sometimes If 'Sometimes', when?		
Configurable If 'Configurable', how?		
Timeouts while waiting for:		
Data Link Confirm Complete Appl. Fragment Application Confirm Complete Appl. Response None Fixed a None Fixed a None Fixed a	t Variable Configurable t Variable ■ Configurable t Variable Configurable	
Others		
Attach explanation if 'Variable' or 'Configurable' was checked for any timeout		
Sends/Executes Control Operations:		
SELECT/OPERATE Never A DIRECT OPERATE Never A	Always Sometimes Configurable Always Sometimes Configurable Configurable Configurable Configurable	
Count > 1 Pulse On Pulse Off Latch On Latch Off Rever Never Never Never	Always Sometimes ConfigurableAlways Sometimes ConfigurableAlways Sometimes Configurable	
	Always Sometimes Configurable Always Sometimes Configurable	
Attach explanation if 'Sometimes' or 'Configurable' was checked for any operation.		
FILL OUT THE FOLLOWING ITEM FOR MASTER DEVICES ONLY:		
Expects Binary Input Change Events:		
Either time-tagged or non-time-tagged for a single event Both time-tagged and non-time-tagged for a single event Configurable (attach explanation)		
FILL OUT THE FOLLOWING ITEMS FOR SLAVE DEVICES ONLY:		
Reports Binary Input Change Events when no specific variation requested:	Reports time-tagged Binary Input Change Events when no specific variation requested:	
■ Never Only time-tagged Only non-time-tagged	■ Never Binary Input Change With Time Binary Input Change With Relative Time	

107 / 145 www.jinkwang.co.kr

Configurable to send both, one or the other (attach explanation)	Configurable (attach explanation)	
Sends Unsolicited Responses:	Sends Static Data in Unsolicited Responses:	
Never ■ Configurable (attach explanation) Only certain objects Sometimes (attach explanation) ■ ENABLE/DISABLE UNSOLICITED Function codes supported	■ Never When Device Restarts When Status Flags Change No other options are permitted.	
Default Counter Object/Variation: No Counters Reported Configurable (attach explanation) Default Object20 Default Variation6 Point-by-point list attached	Counters Roll Over at: No Counters Reported Configurable (attach explanation) 16 Bits 32 Bits Other Value Point-by-point list attached	
Sends Multi-Fragment Responses: Yes ■ No		

Implementation Table


						Version 3.1
ОВЈЕСТ			REQUEST (slave must parse)		RESPONSE (master must parse)	
Obj	Var	Description			Func Codes (dec)	
1	0	Binary Input - All Variations	1	00, 01, 06	(dec)	(Hex)
1	1	Binary Input	1	00, 01, 06	129	00, 01
1	2	Binary Input with Status	1	00, 01, 06	129	00, 01
2	0	Binary Input Change - All Variations	1	06, 07, 08		
2	1	Binary Input Change without Time	1	06, 07, 08	129, 130	17, 28
2	2	Binary Input Change with Time	1	06, 07, 08	129, 130	17, 28
2	3	Binary Input Change with Relative Time	1	06, 07, 08	Does not s Var 3 , NULL	support Obj 2 Response
10	0	Binary Output - All Variations	1	00, 01, 06	vai o , itozz	Поороноо
10	1	Binary Output				
10	2	Binary Output Status	1	00, 01, 06	129	00, 01
12	0	Control Block - All Variations				
12	1	Control Relay Output Block	3, 4, 5, 6	17, 28	129	echo of request
12	2	Pattern Control Block				
12	3	Pattern Mask				
20	0	Binary Counter - All Variations	1	00, 01, 06		
20	1	32-bit Binary Counter				
20	2	16-bit Binary Counter	1	00, 01, 06	129	00, 01
20	3	32-bit Delta Counter				
20	4	16-bit Delta Counter				
20	5	32-bit Binary Counter without Flag				
20	6	16-bit Binary Counter without Flag	1	00, 01, 06	129, 130	00, 01
20	7	32-bit Delta Counter without Flag				
20	8	16-bit Delta Counter without Flag				
21	0	Frozen Counters - All Variations				
21	1	32-bit Frozen Counter				
21	2	16-bit Frozen Counter				
21	3	32-bit Frozen Delta Counter				
21	4	16-bit Frozen Delta Counter				
21	5	32-bit Frozen Counter with Time of Freeze				
21	6	16-bit Frozen Counter with Time of Freeze				
21	7	32-bit Frozen Delta Counter with Time of Freeze				
21	8	16-bit Frozen Delta Counter with Time of Freeze	<u> </u>			
21	9	32-bit Frozen Counter without Flag				

21	10	16-bit Frozen Counter without Flag			
21	11	32-bit Frozen Delta Counter without Flag			
21	12	16-bit Frozen Delta Counter without Flag			
22	0	Counter Change Event - All Variations 1	06, 07, 08		
22	1	32-Bit Counter Change Event without Time			
22	2	16-Bit Counter Change Event without Time			
22	3	32-Bit Delta Counter Change Event without Time			
22	4	16-Bit Delta Counter Change Event without Time			
22	5	32-Bit Counter Change Event with Time			
22	6	16-Bit Counter Change Event with Time			
22	7	32-Bit Delta Counter Change Event with			
22	8	Time 16-Bit Delta Counter Change Event with 1 Time	06, 07, 08	129, 130	17, 28
23	0	Frozen Counter Events - All Variations			
23	1	32-Bit Frozen Counter Event without Time			
23	2	16-Bit Frozen Counter Event without Time			
23	3	32-Bit Frozen Delta Counter Event without Time			
23	4	16-Bit Frozen Delta Counter Event without Time			
23	5	32-Bit Frozen Counter Event with Time			
23	6	16-Bit Frozen Counter Event with Time			
23	7	32-Bit Frozen Delta Counter Event with Time			
23	8	16-Bit Frozen Delta Counter Event with Time			
30	0	Analog Input - All Variations 1	00, 01, 06		
30	1	32-Bit Analog Input			
30	2	16-Bit Analog Input 1	00, 01, 06	129	00, 01
30	3	32-Bit Analog Input without Flag			
30	4	16-Bit Analog Input without Flag 1	00, 01, 06	129	00, 01
31	0	Frozen Analog Input - All Variations			
31	1	32-Bit Frozen Analog Input			
31	2	16-Bit Frozen Analog Input			
31	3	32-Bit Frozen Analog Input with Time of Freeze			
31	4	16-Bit Frozen Analog Input with Time of Freeze			
31	5	32-Bit Frozen Analog Input without Flag			
31	6	16-Bit Frozen Analog Input without Flag			
32	0	Analog Change Event - All Variations 1	06, 07, 08		
32	1	32-Bit Analog Change Event without Time			
32	2	16-Bit Analog Change Event without Time 1	06, 07, 08	129, 130	17, 28

		L				
32	3	32-Bit Analog Change Event with Time				
32	4	16-Bit Analog Change Event with Time	1	06, 07, 08	129, 130	17, 28
33	0	Frozen Analog Event - All Variations				
33	1	32-Bit Frozen Analog Event without Time				
33	2	16-Bit Frozen Analog Event without Time				
33	3	32-Bit Frozen Analog Event with Time				
33	4	16-Bit Frozen Analog Event with Time				
40	0	Analog Output Status - All Variations	1	00, 01, 06		
40	1	32-Bit Analog Output Status				
40	2	32-Bit Analog Output Status	1	00, 01, 06	129	00, 01
41	0	Analog Output Block - All Variations				
41	1	32-Bit Analog Output Block				
41	2	16-Bit Analog Output Block	3, 4, 5, 6	17, 28	129	echo of request
50	0	Time and Date - All Variations				1
			2	07		
50	1	Time and Date	1	quantity=1 07	129	07
50	2	Time and Date with Interval		quantity=1	120	quantity=1
50 51	0	Time and Date CTO - All Variations				
	1	Time and Date CTO			129	07,
51	-					quantity=1 07,
51	2	Unsynchronized Time and Date CTO			129	quantity=1
52	0	Time Delay - All Variations				
52	1	Time Delay Coarse			129	07, quantity=1
52	2	Time Delay Fine			129	07, quantity=1
60	0	Not Defined				quartity=1
60	1	Class 0 Data	1	06		
			1	06, 07, 08		
60	2	Class 1 Data	20, 21	06		
			1	06, 07, 08		
60	3	Class 2 Data	20, 21	06		
			1	06, 07, 08		
60	4	Class 3 Data	20, 21	06		
70	1	File Identifier				
80	1	Internal Indications	2	00, index=7		
81	1	Storage Object		iiiuex=1		
		• •				
82	1	Device Profile				

83	2	Private Registration Object Descriptor			
90	1	Application Identifier			
100	1	Shot Floating Point			
100	2	Long Floating Point			
100	3	Extended Floating Point			
101	1	Small Packed Binary-Coded Decimal			
101	2	Medium Packed Binary-Coded Decimal			
101	3	Large Packed Binary-Coded Decimal			
No Object		13			
	No Object		14		
	No Object		23		

Appendix 4. DIMENSIONS

Appendix 5. FTU INSPECTION CHECK LIST

1. Connections check

- Check if all connectors except Battery in the control box are plugged.
- <Caution> The connector to Battery should be unplugged when the box is stored or delivered to site. If not so, the battery can be discharged by the power consumption of the Power & Control Board regardless of MCCB or RTU power switch.
- Check if all screw terminals in the control box is locked tightly.

Test	t Result
□ОК	□ Fail

2 . Battery Status check

- Plug-in the Battery connector to the connector on the Power & Control Board
- Press the Battery Start button on the panel inside the box.
- Check if RTU is powered on and runs without error and check the Battery voltage and current through Battery Test Terminal on the panel by using portable Meter.
- < Caution > Be careful of avoiding short of voltage test terminal.
- <Caution> The connector to Battery should be unplugged when the box is stored or delivered to site.

Test Result			
□ОК	□ Fail		

3. Power & Fuses

- For protection of circuits in the control box, there are some fuses.
- AC(220V) input circuit, Battery voltage test terminal, 3 fuses on the Power & Control Board. (AC input/DC output for FTU & Control /DC output for Modem)
- Use fuse of the specified rating for exchange.
- Modem power output voltage is 24V. The voltage is adjustable for 13V~24V range. For the adjustment, you have to remove the upper case of the Power & Control Board. You should be very careful.

Test	Result
□ОК	□ Fail

4. Insulation Test

- <Caution> Before Test, Disconnect two frame ground jumper wires on I/O Board in the RTU and one on Power & Control Board
- * Use cables connected to the control & power connector outside control box and earth-terminal of the control box. Refer to the external connection diagram.

4.1 DC Resistance

- Measure the DC resistance of the following circuits by DC 500V Mega Ohm Tester

Circuit	Criteria	Test R	esult
All Circuit – Earth	≥ 10MΩ	□ OK	□ Fail

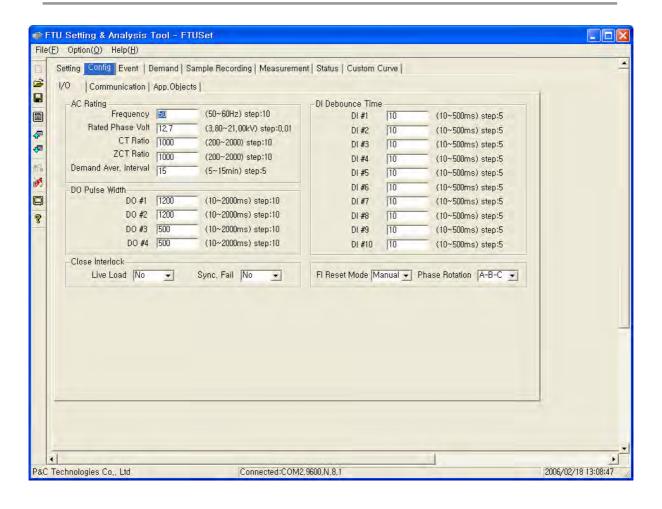
4.2 AC Insulation

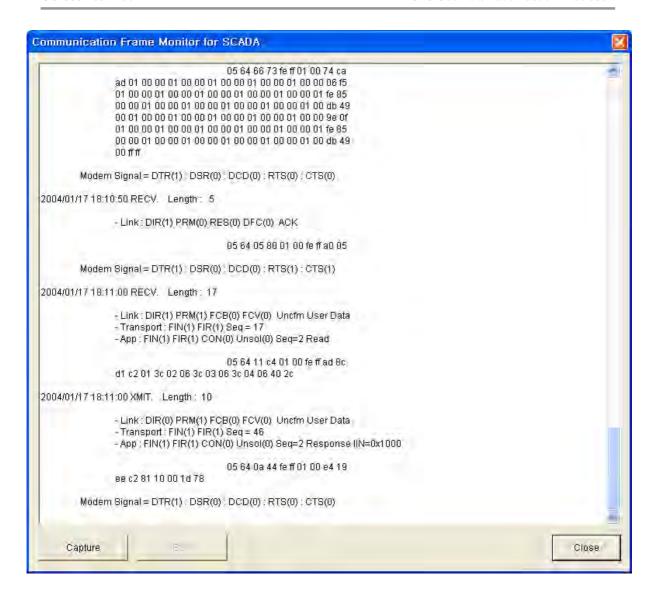
- Leakage current should be below 5mA under the following test condition.

Circuit	Criteria	Test Result
All Circuit – Earth	AC 2kV, 1min	□ OK □ Fail

^{*} The insulation test between the circuits shall be performed after MOVs in the RTU or on Power & Control Board and also the biased connections are removed. This test shall be performed with our engineer as type test.

5. RTU Run Status Check


- Check if RUN LED blinks, Sys Error LED is lit off.


Test	Result
□ОК	□ Fail

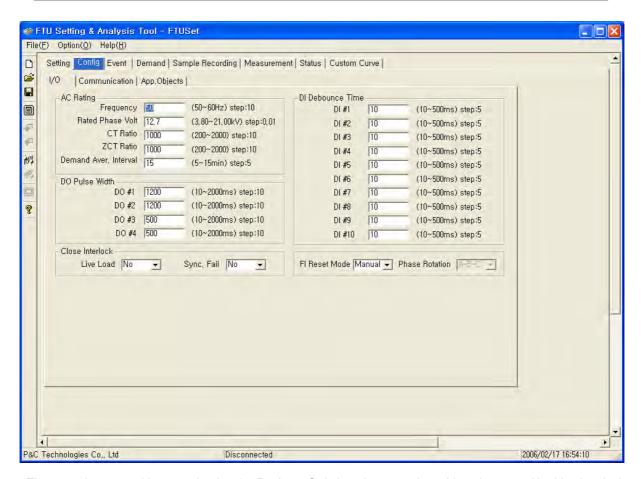
6. Communication link Check

- Check if BPS, Address, Modem control of RTU was set appropriately. BPS setting change needs the restart of RTU.
- Check if RX LED blinks while receiving data from Master Station.
- Check if RTU responds to the request from master by looking at RTS, TX LED.
- * If only RTS LED is turned on during CTS checkout time, please check CTS signal from MODEM.
- Protocol Monitor built in the RTU can be used to check if the RTU receives or transmits data correctly.

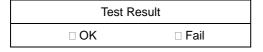
115 / 145 www.jinkwang.co.kr

Test	Result
□ОК	□ Fail

7. Switch Control Problem Check

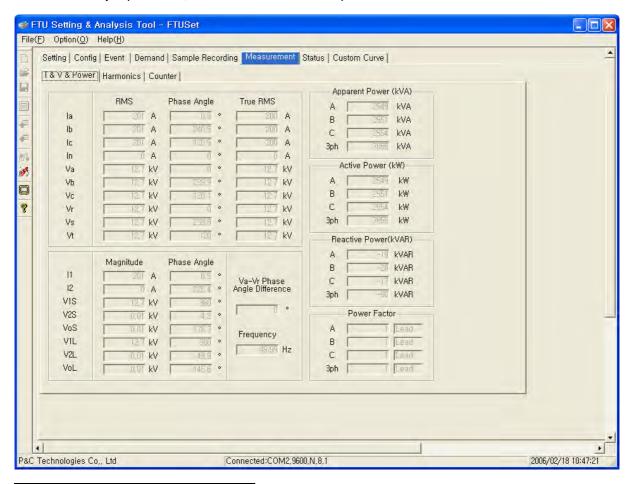

- Check Interlock condition: Local/Remote, Switch Status, Gas Low, Handle Lock

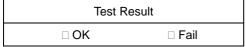
Gas low, handle lock condition interlocks switch open/close operation.


Switch status is determined by double binary inputs (open/closed contact inputs). If the statuses of double binary inputs are identical, the control operation is blocked. The same operation to the current switch status is inhibited. At local the control can be executed after select. (SELECT button/LED) Select state is canceled at SBO timeout.

- Type of open/close command output is pulsed-on contact. Pulse width can be set through setting. (Configuration Menu.) In case of control operation from master, the pulse width is given through DNP object O12V1. Long trip pulse time may block the correct reclosing and lockout the Recloser. The trip pulse time shall be shorter than the dead time for the fast reclosing.

117 / 145 www.jinkwang.co.kr




- The control command is transmitted to the Recloser Switch as battery-voltage biased contact. No drive interlock scheme is equipped in the control box.

8. Measurements Check

- Check the settings of Analog input rating. Frequency, CT Ratio, Rated Phase voltage
- Inject the accurate 3-phase voltages and currents to the Cable instead of switch, and check the value through the measurements window or LCD. The value of voltages and currents that are injected is the secondary value of sensor installed inside the Recloser Switch. For 1000A, inject 1A on the terminals of the control box in case of 1000:1 CT ratio. For Rated phase voltage, 4V~10V shall be applied to the control box. The exact value depends on the calibrating state of the Recloser Switch.
- For the accuracy improvement, the calibration is needed on panel.

9. Status Monitoring Check

- Check if the status monitored by RTU is correct through Display/Status Menu on LCD or Status Page on PC Tool.
- The physical dry contacts from Recloser Switch is biased in the control box and transmitted to the binary input circuits of RTU.

Test Result			
□ОК	□ Fail		

App	endix 6.	IEC60870-	-5-101 Interope	erability	y	
1.	System o	or device				
	Ш	System definition	on			
	Н	Controlling station	on definition (Mas	ster)		
		Controlled stati	on definition (S	lave)		
2.	Network	configuration				
	\mathbf{x}					
	H	Point-to-point		님	Multipoint-par	tvline
_		Multiple point-t	o-point	Ш	Multipoint-sta	r
	Physical	_	ı			
		speed (control		orobono	~~	Dalamand interchange
Circ	uit V.24/\ ndard	nterchange /.28	Unbalanced int Circuit V.24/V Recommended	28		Balanced interchange Circuit X.24/X.27
Г] 100 bit	s/sec	X 2400 bits	/sec		2400 bits/sec
Ē	200 bit		X 4800 bits			4800 bits/sec
	_			, 000		9600 bits/sec
_	300 bit	s/sec	X 9600 bits			19200 bits/sec
] 600 bit	s/sec	X 19200 bi	ts/sec		38400 bits/sec
_	7					56000 bits/sec
LX	1200 b	its/sec				64000 bits/sec
Unb Circ	alanced in uit V.24/V.		nbalanced interc		Balanced in	terchange
] 100 bi	ts/sec	X 2400 bit	s/sec		2400 bits/sec
] 200 bi	ts/sec	X 4800 bit	s/sec		4800 bits/sec
	300 bi	ts/sec	x 9600 bit	s/sec		9600 bits/sec
Г	600 bi		X 19200 b		;	19200 bits/sec
x	1200 b	oits/sec				38400 bits/sec
	_					56000 bits/sec
4.	Link laye	er				64000 bits/sec
	me forma panion st		character 1 a	nd the	fixed time out	interval are used exclusively in this
	Link trans	smission procedu	<u>re</u>	<u>Ac</u>	ddress field of th	ne link
	Bala	nced transmiss	ion		Not prese	nt (balanced transmission only)
5	U nba	alanced transmi	ssion		One octet	
F	rame leng	nth		X	Two octets	
	anno IEII(Structured	
	261	Maximum lengt	th L		Unstructur	ed

When using an unbalanced link layer, the following ASDU types are returned in class 2 messages (low priority) with the indicated causes of transmission:

The standard assignment of ASDUs to class 2 messages is used as follows:

Type identification	Cause of transmission
9, 11, 13, 21	<1>

	LA special assignment of ASE	OUs to class 2 messages is use	d as follows:
٦	Type identification	Cause of transmission	
ŀ			

NOTE	In reapones to a close 2 pell	a controlled station may reason d with	alaga 1 data whan there is no a

NOTE In response to a class 2 poll, a controlled station may respond with class 1 data when there is no class 2 data available.

5. Application layer

Transmission mode for application data	
•	
Common address of ASDU	
One octet Two octets	
Information object address	
One octet X Two octets Three octets Cause of transmission Structured Unstructured	
Two octets (with originator address) Selection of standard ASDUs Two octets (with originator address) Set to zero in case of no originator address)	
Process information in monitor direction	
<pre>X <1> := Single-point information</pre>	M SP NA 1 M_SP_TA_1
<3>:= Double-point information <4>:= Double-point information with time tag	M DP NA 1 M_DP_TA_1
<5> := Step position information <6>:= Step position information with time tag	M ST NA 1 M_ST_TA_1
<pre><7> := Bitstring of 32 bit <8> := Bitstring of 32 bit with time tag <9> := Measured value, normalized value <10> := Measured value. normalized value with time tag <11> := Measured value, scaled value</pre>	M BO NA 1 M_BO_TA_1 M_ME_NA_1 M ME TA 1 M_ME_NB_1
x <12>:=Measured value, scaled value with time tag <13>:=Measured value, short floating point value	M ME TB 1 M_ME_NC_1
<14>:=Measured value. short floating point value with time tag <15>:=Integrated totals	M ME TC 1 M_IT_NA_1
<16>:=Integrated totals with time tag <17>:=Event of protection equipment with time tag	M IT TA 1 M_EP_TA_1
<18>:=Packed start events of protection equipment with time tag	M_EP_TB_1
<19>:=Packed output circuit information of protection equipment with time tag <20>:=Packed single-point information with status change detection	M EP TC 1 M_PS_NA_1
<21>:=Measured value, normalized value without quality descriptor	M_ME_ND_1
<30>:=Single-point information with time tag CP56Time2a	M_SP_TB_1
<31>:=Double-point information with time tag CP56Time2a <32>:=Step position information with time tag CP56Time2a	M DP TB 1 M_ST_TB_1
<33>:=Bitstring of 32 bit with time tag CP56Time2a	M_BO_TB_1
<34>:=Measured value, normalized value with time tag CP56Time2a	M_ME_TD_1
<35>:=Measured value, scaled value with time tag CP56Time2a	M_ME_TE_1

<36>:=Measured value, short floating point value with time tag CP56Time2a	M_ME_TF_1
<37>:=Integrated totals with time tag CP56Time2a	M_IT_TB_1
<38>:=Event of protection equipment with time tag CP56Time2a	M_EP_TD_1
>30>:-Packed start events of protection equipment with time tag CP56Time?a	M FP TF 1
<40>:=Packed output circuit information of protection equipment with time tag CP56Time2a	M_EP_TF_1
Either ASDUs of the set <2>, <4>, <6>, <8>, <10>, <12>, <14>, <16>, <17>, <18>, <19> or	of the set <30 -40>

Either ASDUs of the set <2>, <4>, <6>, <8>, <10>, <12>, <14>, <16>, <17>, <18>, <19> or of the set <30 -40> are used.

Process information in control direction

X <45>:=Single command	C SC NA 1
X <46>:=Double command	C_DC_NA_1
<47>:=Regulating step command <48>:=Set point command, normalized value	C RC NA 1 C_SE_NA_1
X <49>:=Set point command, scaled value	C SE NB 1
<50>:=Set point command, short floating point value	C_SE_NC_1
<51> :=Bitstring of 32 bit	C_BO_NA_1
System information in monitor direction	
X <70>:=End of initialization	M_EI_NA_1
System information in control direction	
X <100>:=Interrogation command	C_IC_NA_1
$\overline{\mathbf{v}}$	
<101>:=Counter interrogation command <102>:=Read command	C CI NA 1 C_RD_NA_1
$ \mathbf{x} $	
<103>:=Clock synchronization command <104>:-Test command	C CS NA 1
<105>:=Reset process command	C_RP_NA_1
<106>:=Delay acquisition command	C_CD_NA_1
Parameter in control direction	0_00_101_1
>110>-Parameter of measured value, normalized value	D ME NA 1
<111>:=Parameter of measured value, scaled value	P_ME_NB_1
<112>:=Parameter of measured value. short floating point value	P ME NC 1
<113>:=Parameter activation	P_AC_NA_1
File transfer	
rile transfer	
<120>:=File ready	F_FR_NA_1
<121>:=Section ready	F_SR_NA_1
<122>:=Call directory, select file, call file, call section	F_SC_NA_1
<123>:=Last section, last segment	F_LS_NA_1
<124>:=Ack file, ack section	 F_AF_NA_1
<125>:=Segment	F_SG_NA_1
L_b<126>:= Directory {blank or X, only available in monitor (standard) direction} (station-specific parameters)	F_DR_TA_1
Shaded boxes are not required.	
Blank = function or ASDU is not used.	

used only in the standa	ard	dire	ectio	n													
Type identification Cause of transmission																	
	1	2	3	4	5	6	7	8	9	1	1	1	1	2	3	4	4
	<u>.</u>	· 	, 	,	Type identification 1 2 3 4	,			Type identification Cause	Type identification Cause of	Type identification Cause of tran	Type identification Cause of transm	Type identification				

125 / 145 www.jinkwang.co.kr

Type identification							Ca	use	of	trar	nsm	issi	on						
	1	2	3	4	5	6	7	8	9	1 0	1	1 2	1 3	2 0 to 3 6	3 7 to 4 1	4 4	4 5	4 6	4 7
<1> M_SP_NA_1			Χ		Χ						Х			Х					
<2> M_SP_TA_1			Х																
<3> M_DP_NA_1			Χ		Χ						Χ			Х					
<4> M_DP_TA_1			X																
<5> M_ST_NA_1																			
<6> M_ST_TA_1 <7> M_BO_NA_1																			
<8> M_BO_TA_1																			
<9> M_ME_NA_1																			
<10> M_ME_TA_1																			
<11> M_ME_NB_1	Х				X									Х					
<12> M_ME_TB_1 <13> M_ME_NC_1																			
<14> M_ME_TC_1																			
<15> M_IT_NA_1			Х												Х				
<16> M_IT_TA_1			Х												Х				
<17> M_EP_TA_1																			
<18> M_EP_TB_1																			
<19> M_EP_TC_1 <20> M_PS_NA_1																			
<21> M_ME_ND_1																			
<30> M_SP_TB_1																			
<31> M_DP_TB_1																			
<32> M_ST_TB_1																			
<33> M_BO_TB_1 <34> M_ME_TD_1																			
<35> M_ME_TE_1																			
<36> M_ME_TF_1																			
<37> M_IT_TB_1																			
<38> M_EP_TD_1																			
<39> M_EP_TE_1																			
<40> M_EP_TF_1																			
<45> C_SC_NA_1						Х	Х	Х	Х	Х									
<46> C_DC_NA_1						Х	Х	Х	Х										
<47> C_RC_NA_1																			
<475 C_RC_NA_1 <485 C_SE_NA_1																			
						~	~	v	v	v									
<49> C_SE_NB_1						X	X	Х	Х	Х									ш
<50> C_SE_NC_1																	-		<u> </u>
<51> C_BO_NA_1																			
<70> M_EI_NA_1				X															
<100 C_IC_NA_1						Х	X	X	X	X									
<101						Х	Х			Х									
<102					Х														
<103 C_CS_NA_1			Х			Х	х												

Type identification			Cause of transmission																	
		1	2	3	4	5	6	7	8	9	1 0	1	1 2	1 3	2 0 to 3 6	3 7 to 4 1	4 4	4 5	4 6	4 7
<104 >	C_TS_NA_1						X	X												
<105 >	C_RP_NA_1						X	X												
<106 >	C_CD_NA_1						X	X												
<110 >	P_ME_NA_1																			
<111	P_ME_NB_1		_																	
<112 >	P_ME_NC_1																			
<113 >	P_AC_NA_1																			
<120 >	F_FR_NA_1																			
<121 >	F_SR_NA_1																			
<122 >	F_SC_NA_1																			
<123 >	F_LS_NA_1																			
<124	F_AF_NA_1																			
<125 >	F_SG_NA_1																			
<126 >	F_DR_TA_1*																		_	
	* Blank or X only.																			

6. Basic application functions

x	Remote initialization
Cyclic	data transmission

Station initialization

X Cyclic data transmission

Read procedure

X Read procedure Spontaneous transmission

X Spontaneous transmission

Double transmission of information objects with cause of transmission spontaneous

The following type identifications may be transmitted in succession caused by a single status change of an information object. The particular information object addresses for which double transmission is enabled are defined in a project-specific list.

	Double-point information M_DP_N Step position information M_ST_N Bitstring of 32 bit M_BO_NA_1, M Measured value, normalized value M Measured value, scaled value M_ Measured value, short floating point	NA_1, M_ST_TA_1 and M 1_BO_TA_1 and M_BO_T 1_ME_NA_1, M_ME_TA_1, .ME_NB_1, M_ME_TB_1	I_ST_T B_1(if of M_ME_ and M_	B_1 defined for a specific ND_1 and M_ME_TD_ ME_TE_1	
X X X X Clock	group 1 group 2 group 3 group 4 group 5 group 6 x synchronization	group 7 group 8 group 9 group 10 group 11 group 12		group 13 group 14 group 15 group 16	
	mand transmission Direct command transmission Direct set-point command transmission Select and execute command Select and execute set-point command				
	C_SE ACTTERM used No additional definition Short-pulse duration (duration determine ong-pulse duration (duration determine organisation)	ned by a system parameter		•	

Transmission of integrated totals
Mode A: local freeze with spontaneous transmission
Mode B: local freeze with counter interrogation
Mode C: freeze and transmit by counter interrogation commands
Mode D: freeze by counter interrogation command, frozen values reported spontaneously
X Counter read
Counter freeze without reset
X Counter freeze with reset
X Counter reset
X General request counter
X Request counter group 1
Request counter group 2
Request counter group 3
Request counter group 4
Parameter loading
Threshold value
Smoothing factor
Low limit for transmission of measured value
High limit for transmission of measured value
Parameter activation
Act/deact of persistent cyclic or periodic transmission of the addressed object
Test procedure
Test procedure
File transfer
File transfer in monitor direction

Transparent file
Transmission of disturbance data of protection equipment
Transmission of sequences of events
Transmission of sequences of recorded analog values
File transfer in control direction
Transparent file
Background scan
Background scan
Acquisition of transmission delay
X Acquisition of transmission delay

130 / 145 www.jinkwang.co.kr

Appendix 7. IEC60870-5-101 Protocol Point Index

Point Address	Description	Remark
M_SP_NA_1	noints	
100	Reserved	
101	Battery Discharged	
102	Control Mode	Local = 1
103	Handle Locked	
104	Gas low	
105	Ext. AC Power Loss	
106	Door Open	
107	DI Spare #1	Contact closed = 1
108	DI Spare #2	Contact closed = 1
109	DI Spare #3	Contact closed = 1
110	Fault Indicator (A)	
111	Fault Indicator (B)	
112	Fault Indicator (C)	
113	Fault Indicator (N)	
114	Fault Indicator (SEF)	
115	Reverse Direction Fault	
116	Open Line Detection A	
117	Open Line Detection B	
118	Open Line Detection C	
119	Open Line Detection R	
120	Open Line Detection S	
121	Open Line Detection T	
122	Sync. fail	
123	System Error	
124	Inrush Detected	
125	Reclosing Blocked	
126	Protection Blocked	
127	Ground Protection Blocked	
128	High Current Trip	
129	Sequence Lockout	
130	Reserved #1	
131	Reserved #2	
M_DP_NA_1	M_DP_NA_1 points	

200	Switch Status	
C_SC_NA_1 p	oints	
1000	Annunciator Manual Reset	No Select Required
1001	Battery Test Output	No Select Required
C_DC_NA_1 p	oints	
1200	Switch Open/Close Control	Select Required Before Execute
M_ME_NB_1 p	points	
2000	la RMS	A
2001	lb RMS	A
2002	Ic RMS	A
2003	In RMS	A
2004	Source side Va RMS	V
2005	Source side Vb RMS	V
2006	Source side Vc RMS	V
2007	Source side Vo RMS	V
2008	Load side Va RMS	V
2009	Load side Vb RMS	V
2010	Load side Vc RMS	V
2011	Load side Vo RMS	V
2012	KVAa	kVA
2013	KVAb	kVA
2014	KVAc	kVA
2015	kVA3ph	kVA
2016	KWa	kW
2017	KWb	kW
2018	KWc	kW
2019	kW3ph	kW
2020	KVARa	kVAR
2021	KVARb	kVAR
2022	KVARc	kVAR
2023	kVAR3ph	kVAR
2024	PFa	X100
2025	PFb	X100
2026	PFc	X100
2027	PF3ph	X100
2028	Va-Vr Phase Angle Diff	° 10
2029	Frequency	HZ100

2031 Reserved 2032 la phase angle 0°10 10 2033 lb phase angle 0°10 2034 lc phase angle 0°10 0°10 2036 ln phase angle 0°10 2036 Source side Va phase angle 0°10 2037 Source side Vb phase angle 0°10 2038 Source side Vb phase angle 0°10 2038 Source side Vb phase angle 0°10 2039 Source side Vb phase angle 0°10 2040 Load side Va phase angle 0°10 2041 Load side Vb phase angle 0°10 2041 Load side Vb phase angle 0°10 2042 Load side Vc phase angle 0°10 2043 Load side Vb phase angle 0°10 2044 I1 RMS A A 2045 I1 phase angle 0°10 2044 I1 RMS A A 2045 I1 phase angle 0°10 2046 I2 RMS A 2047 I2 phase angle 0°10 2048 Source side V1 RMS V 2049 Source side V1 RMS V 2049 Source side V2 phase angle 0°10 2050 Source side V2 phase angle 0°10 2051 Source side V2 phase angle 0°10 2052 Load side V2 phase angle 0°10 2054 Load side V2 phase angle 0°10 2055 Load side V1 phase angle 0°10 2056 PFa lead Lead=1/Lag=0 2056 Last Fault Ib A 2061 Last Fault Ib A 2062 Last Fault Ib A 2064 Last Fault Ib A 2065 Reserved 2066 Reserved 2067 2075	2030	Temperature	Degree
2033	2031	Reserved	
Lephase angle	2032	la phase angle	° 10
2035	2033	Ib phase angle	° 10
2036 Source side Va phase angle °10	2034	Ic phase angle	° 10
2037 Source side Vb phase angle ° 10 2038 Source side Vc phase angle ° 10 2039 Source side Vo phase angle ° 10 2040 Load side Va phase angle ° 10 2041 Load side Vb phase angle ° 10 2042 Load side Vo phase angle ° 10 2043 Load side Vo phase angle ° 10 2044 I1 RMS A 2045 I1 phase angle ° 10 2046 I2 RMS A 2047 I2 phase angle ° 10 2048 Source side V1 RMS V 2049 Source side V2 RMS V 2050 Source side V2 phase angle ° 10 2051 Source side V2 phase angle ° 10 2052 Load side V1 RMS A 2053 Load side V1 phase angle ° 10 2054 Load side V2 phase angle ° 10 2054 Load side V2 phase angle ° 10 2055 Load side V2 phase angle ° 10 2056	2035	In phase angle	° 10
2038 Source side Vc phase angle 0° 10	2036	Source side Va phase angle	° 10
2039 Source side Vo phase angle ° 10	2037	Source side Vb phase angle	° 10
2040 Load side Va phase angle ° 10 2041 Load side Vb phase angle ° 10 2042 Load side Vo phase angle ° 10 2043 Load side Vo phase angle ° 10 2044 I1 RMS A 2045 I1 phase angle ° 10 2046 I2 RMS A 2047 I2 phase angle ° 10 2048 Source side V1 RMS V 2049 Source side V1 phase angle ° 10 2050 Source side V2 RMS V 2051 Source side V2 phase angle ° 10 2052 Load side V1 RMS A 2053 Load side V1 phase angle ° 10 2054 Load side V2 phase angle ° 10 2054 Load side V2 phase angle ° 10 2055 Load side V2 phase angle ° 10 2056 PFa lead Lead=1/Lag=0 2057 PFb lead Lead=1/Lag=0 2059 PF3ph lead Lead=1/Lag=0 2060 Last Fault	2038	Source side Vc phase angle	° 10
2041 Load side Vb phase angle ° 10 2042 Load side Vc phase angle ° 10 2043 Load side Vo phase angle ° 10 2044 I1 RMS A 2045 I1 phase angle ° 10 2046 I2 RMS A 2047 I2 phase angle ° 10 2048 Source side V1 RMS V 2049 Source side V1 phase angle ° 10 2050 Source side V2 RMS V 2051 Source side V2 phase angle ° 10 2052 Load side V1 phase angle ° 10 2053 Load side V1 phase angle ° 10 2054 Load side V2 phase angle ° 10 2055 Load side V2 phase angle ° 10 2056 PFa lead Lead=1/Lag=0 2056 PFa lead Lead=1/Lag=0 2059 PF3ph lead Lead=1/Lag=0 2060 Last Fault la A 2061 Last Fault lb A 2062 Last Fault lo	2039	Source side Vo phase angle	° 10
2042 Load side Vc phase angle ° 10 2043 Load side Vo phase angle ° 10 2044 I1 RMS A 2045 I1 phase angle ° 10 2046 I2 RMS A 2047 I2 phase angle ° 10 2048 Source side V1 RMS V 2049 Source side V1 phase angle ° 10 2050 Source side V2 RMS V 2051 Source side V2 phase angle ° 10 2052 Load side V1 phase angle ° 10 2053 Load side V1 phase angle ° 10 2054 Load side V2 phase angle ° 10 2054 Load side V2 phase angle ° 10 2055 Load side V2 phase angle ° 10 2056 PFa lead Lead=1/Lag=0 2057 PFb lead Lead=1/Lag=0 2059 PF3ph lead Lead=1/Lag=0 2060 Last Fault Ia A 2061 Last Fault Ib A 2062 Last Fault In	2040	Load side Va phase angle	° 10
2043 Load side Vo phase angle ° 10 2044 I1 RMS A 2045 I1 phase angle ° 10 2046 I2 RMS A 2047 I2 phase angle ° 10 2048 Source side V1 RMS V 2049 Source side V1 RMS V 2050 Source side V2 RMS V 2051 Source side V2 phase angle ° 10 2052 Load side V1 RMS A 2053 Load side V1 phase angle ° 10 2054 Load side V2 RMS A 2055 Load side V2 phase angle ° 10 2056 PFa lead Lead=1/Lag=0 2057 PFb lead Lead=1/Lag=0 2058 PFc lead Lead=1/Lag=0 2059 PF3ph lead Lead=1/Lag=0 2060 Last Fault la A 2061 Last Fault lb A 2062 Last Fault lo A 2063 Last Fault lo A 2065	2041	Load side Vb phase angle	° 10
2044	2042	Load side Vc phase angle	° 10
2045	2043	Load side Vo phase angle	° 10
2046 I2 RMS A 2047 I2 phase angle ° 10 2048 Source side V1 RMS V 2049 Source side V2 phase angle ° 10 2050 Source side V2 RMS V 2051 Source side V2 phase angle ° 10 2052 Load side V1 RMS A 2053 Load side V1 phase angle ° 10 2054 Load side V2 RMS A 2055 Load side V2 phase angle ° 10 2056 PFa lead Lead=1/Lag=0 2057 PFb lead Lead=1/Lag=0 2058 PFc lead Lead=1/Lag=0 2059 PF3ph lead Lead=1/Lag=0 2060 Last Fault la A 2061 Last Fault lb A 2062 Last Fault lc A 2063 Last Fault ln A 2065 Reserved A	2044	I1 RMS	А
2047 I2 phase angle ° 10 2048 Source side V1 RMS V 2049 Source side V2 phase angle ° 10 2050 Source side V2 RMS V 2051 Source side V2 phase angle ° 10 2052 Load side V1 RMS A 2053 Load side V1 phase angle ° 10 2054 Load side V2 RMS A 2055 Load side V2 phase angle ° 10 2056 PFa lead Lead=1/Lag=0 2057 PFb lead Lead=1/Lag=0 2058 PFc lead Lead=1/Lag=0 2059 PF3ph lead Lead=1/Lag=0 2060 Last Fault Ia A 2061 Last Fault Ib A 2062 Last Fault Ic A 2063 Last Fault In A 2064 Last Fault vo A 2065 Reserved	2045	I1 phase angle	° 10
2048 Source side V1 RMS V 2049 Source side V1 phase angle ° 10 2050 Source side V2 RMS V 2051 Source side V2 phase angle ° 10 2052 Load side V1 RMS A 2053 Load side V1 phase angle ° 10 2054 Load side V2 RMS A 2055 Load side V2 phase angle ° 10 2056 PFa lead Lead=1/Lag=0 2057 PFb lead Lead=1/Lag=0 2058 PFc lead Lead=1/Lag=0 2059 PF3ph lead Lead=1/Lag=0 2060 Last Fault Ia A 2061 Last Fault Ib A 2062 Last Fault Ic A 2063 Last Fault In A 2064 Last Fault vo A 2065 Reserved A	2046	I2 RMS	А
2049 Source side V1 phase angle ° 10 2050 Source side V2 RMS V 2051 Source side V2 phase angle ° 10 2052 Load side V1 RMS A 2053 Load side V1 phase angle ° 10 2054 Load side V2 RMS A 2055 Load side V2 phase angle ° 10 2056 PFa lead Lead=1/Lag=0 2057 PFb lead Lead=1/Lag=0 2058 PFc lead Lead=1/Lag=0 2059 PF3ph lead Lead=1/Lag=0 2060 Last Fault la A 2061 Last Fault lb A 2062 Last Fault lc A 2063 Last Fault ln A 2064 Last Fault vo A 2065 Reserved A	2047	I2 phase angle	° 10
2050 Source side V2 RMS V 2051 Source side V2 phase angle ° 10 2052 Load side V1 RMS A 2053 Load side V1 phase angle ° 10 2054 Load side V2 RMS A 2055 Load side V2 phase angle ° 10 2056 PFa lead Lead=1/Lag=0 2057 PFb lead Lead=1/Lag=0 2058 PFc lead Lead=1/Lag=0 2059 PF3ph lead Lead=1/Lag=0 2060 Last Fault Ia A 2061 Last Fault Ib A 2062 Last Fault Ic A 2063 Last Fault In A 2064 Last Fault vo A 2065 Reserved A	2048	Source side V1 RMS	V
2051 Source side V2 phase angle ° 10 2052 Load side V1 RMS A 2053 Load side V1 phase angle ° 10 2054 Load side V2 RMS A 2055 Load side V2 phase angle ° 10 2056 PFa lead Lead=1/Lag=0 2057 PFb lead Lead=1/Lag=0 2058 PFc lead Lead=1/Lag=0 2059 PF3ph lead Lead=1/Lag=0 2060 Last Fault la A 2061 Last Fault lb A 2062 Last Fault lc A 2063 Last Fault ln A 2064 Last Fault vo A 2065 Reserved	2049	Source side V1 phase angle	° 10
2052 Load side V1 RMS A 2053 Load side V1 phase angle ° 10 2054 Load side V2 RMS A 2055 Load side V2 phase angle ° 10 2056 PFa lead Lead=1/Lag=0 2057 PFb lead Lead=1/Lag=0 2058 PFc lead Lead=1/Lag=0 2059 PF3ph lead Lead=1/Lag=0 2060 Last Fault la A 2061 Last Fault lb A 2062 Last Fault lc A 2063 Last Fault ln A 2064 Last Fault vo A 2065 Reserved A	2050	Source side V2 RMS	V
2053 Load side V1 phase angle ° 10 2054 Load side V2 RMS A 2055 Load side V2 phase angle ° 10 2056 PFa lead Lead=1/Lag=0 2057 PFb lead Lead=1/Lag=0 2058 PFc lead Lead=1/Lag=0 2059 PF3ph lead Lead=1/Lag=0 2060 Last Fault la A 2061 Last Fault lb A 2062 Last Fault lc A 2063 Last Fault ln A 2064 Last Fault vo A 2065 Reserved A	2051	Source side V2 phase angle	° 10
2054 Load side V2 RMS A 2055 Load side V2 phase angle ° 10 2056 PFa lead Lead=1/Lag=0 2057 PFb lead Lead=1/Lag=0 2058 PFc lead Lead=1/Lag=0 2059 PF3ph lead Lead=1/Lag=0 2060 Last Fault la A 2061 Last Fault lb A 2062 Last Fault lc A 2063 Last Fault ln A 2064 Last Fault vo A 2065 Reserved A	2052	Load side V1 RMS	А
2055 Load side V2 phase angle ° 10 2056 PFa lead Lead=1/Lag=0 2057 PFb lead Lead=1/Lag=0 2058 PFc lead Lead=1/Lag=0 2059 PF3ph lead Lead=1/Lag=0 2060 Last Fault la A 2061 Last Fault lb A 2062 Last Fault lc A 2063 Last Fault ln A 2064 Last Fault vo A 2065 Reserved A	2053	Load side V1 phase angle	° 10
2056 PFa lead Lead=1/Lag=0 2057 PFb lead Lead=1/Lag=0 2058 PFc lead Lead=1/Lag=0 2059 PF3ph lead Lead=1/Lag=0 2060 Last Fault la A 2061 Last Fault lb A 2062 Last Fault lc A 2063 Last Fault ln A 2064 Last Fault vo A 2065 Reserved	2054	Load side V2 RMS	A
2057 PFb lead Lead=1/Lag=0 2058 PFc lead Lead=1/Lag=0 2059 PF3ph lead Lead=1/Lag=0 2060 Last Fault la A 2061 Last Fault lb A 2062 Last Fault lc A 2063 Last Fault ln A 2064 Last Fault vo A 2065 Reserved	2055	Load side V2 phase angle	° 10
2058 PFc lead Lead=1/Lag=0 2059 PF3ph lead Lead=1/Lag=0 2060 Last Fault la A 2061 Last Fault lb A 2062 Last Fault lc A 2063 Last Fault ln A 2064 Last Fault vo A 2065 Reserved	2056	PFa lead	Lead=1/Lag=0
2059 PF3ph lead Lead=1/Lag=0 2060 Last Fault la A 2061 Last Fault lb A 2062 Last Fault lc A 2063 Last Fault ln A 2064 Last Fault vo A 2065 Reserved	2057	PFb lead	Lead=1/Lag=0
2060 Last Fault la A 2061 Last Fault lb A 2062 Last Fault lc A 2063 Last Fault ln A 2064 Last Fault vo A 2065 Reserved	2058	PFc lead	Lead=1/Lag=0
2061 Last Fault Ib A 2062 Last Fault Ic A 2063 Last Fault In A 2064 Last Fault vo A 2065 Reserved	2059	PF3ph lead	Lead=1/Lag=0
2062 Last Fault Ic A 2063 Last Fault In A 2064 Last Fault vo A 2065 Reserved	2060	Last Fault la	A
2063 Last Fault In A 2064 Last Fault vo A 2065 Reserved	2061	Last Fault lb	Α
2064 Last Fault vo A 2065 Reserved	2062	Last Fault Ic	A
2065 Reserved	2063	Last Fault In	A
	2064	Last Fault vo	A
2066 Reserved	2065	Reserved	
	2066	Reserved	

2068 Demand I Ib A 2070 Demand I Ic A 2071 Demand I In A 2072 Demand P kWa kW 2073 Demand P kWb kW 2074 Demand P kWb kW 2075 Demand P kWb kW 2076 Demand P kWARa kVAR 2077 Demand P kVARb kVAR 2078 Demand P kVARS kVAR 2079 Demand P kVAR3ph kVAR 2080 Max. I Ia A 2081 Max. IIb A 2082 Max. IIc A 2083 Max. IIh A 2084 Max. PI kWa kW 2085 Max. PI kWb kW 2086 Max. PI kWa kW 2087 Max. PI kVARa kVAR 2089 Max. PI kVARa kVAR 2099 Max. PI kVARb kVAR 2099 Max. PI kVARc kVAR 2099 <	2067	Reserved	
2069 Demand I Ib A 2070 Demand I Ic A 2071 Demand I In A 2072 Demand P kWa kW 2073 Demand P kWb kW 2074 Demand P kWC kW 2075 Demand P kW3ph kW 2076 Demand P kVARa kVAR 2077 Demand P kVARa kVAR 2078 Demand P kVARSb kVAR 2079 Demand P kVAR3ph kVAR 2080 Max. I Ia A 2081 Max. I Ib A 2082 Max. I Ib A 2083 Max. I In A 2084 Max. P1 kWa kW 2085 Max. P1 kWa kW 2086 Max. P1 kWc kW 2087 Max. P1 kVARa kVAR 2089 Max. P1 kVARa kVAR 2090 Max. P1 kVARb kVAR 2091 Max. P1 kVARc kVAR 2093	2068	Demand I Ia	A
2071 Demand I In A 2072 Demand P kWa kW 2073 Demand P kWb kW 2074 Demand P kWc kW 2075 Demand P kW3ph kW 2076 Demand P kVARa kVAR 2077 Demand P kVARb kVAR 2078 Demand P kVARc kVAR 2079 Demand P kVAR3ph kVAR 2080 Max. I la A 2081 Max. I la A 2082 Max. I lb A 2083 Max. I lc A 2084 Max. P1 kWa kW 2085 Max. P1 kWb kW 2086 Max. P1 kWc kW 2087 Max. P1 kWaRa kVAR 2088 Max. P1 kVARa kVAR 2099 Max. P1 kVAR3ph kVAR 2090 Max. P1 kVAR3ph kVAR 2091 Ia THD % 2093 Ia THD % 2094 <t< td=""><td>2069</td><td>Demand I lb</td><td>A</td></t<>	2069	Demand I lb	A
2072 Demand P kWb kW 2073 Demand P kWb kW 2074 Demand P kWc kW 2075 Demand P kW3ph kW 2076 Demand P kVARa kVAR 2077 Demand P kVARb kVAR 2078 Demand P kVARc kVAR 2079 Demand P kVAR3ph kVAR 2080 Max. I la A 2081 Max. I la A 2082 Max. I lb A 2083 Max. I lc A 2084 Max. P1 kWa kW 2085 Max. P1 kWb kW 2086 Max. P1 kWb kW 2087 Max. P1 kWaRa kVAR 2088 Max. P1 kVARa kVAR 2099 Max. P1 kVARab kVAR 2090 Max. P1 kVAR3ph kVAR 2091 Max. P1 kVAR3ph kVAR 2093 la THD % 2094 lb THD % 2095	2070	Demand I Ic	Α
2073 Demand P kWb kW 2074 Demand P kWc kW 2075 Demand P kW3ph kW 2076 Demand P kVARa kVAR 2077 Demand P kVARb kVAR 2078 Demand P kVARc kVAR 2079 Demand P kVAR3ph kVAR 2080 Max. I la A 2081 Max. I lb A 2082 Max. I lc A 2083 Max. I ln A 2084 Max. P1 kWa kW 2085 Max. P1 kWb kW 2086 Max. P1 kWc kW 2087 Max. P1 kW3ph kW 2088 Max. P1 kVARa kVAR 2090 Max. P1 kVARb kVAR 2091 Max. P1 kVARc kVAR 2092 3-phase currents THD % 2093 Ia THD % 2094 Ib THD % 2095 Ic THD % 2096 So	2071	Demand I In	А
2074 Demand P kWc kW 2075 Demand P kW3ph kW 2076 Demand P kVARa kVAR 2077 Demand P kVARb kVAR 2078 Demand P kVARc kVAR 2079 Demand P kVAR3ph kVAR 2080 Max. I la A 2081 Max. I lb A 2082 Max. I lc A 2083 Max. I ln A 2084 Max. P1 kWa kW 2085 Max. P1 kWa kW 2086 Max. P1 kWb kW 2087 Max. P1 kWaph kW 2088 Max. P1 kVARa kVAR 2089 Max. P1 kVARb kVAR 2090 Max. P1 kVARc kVAR 2091 Max. P1 kVAR3ph kVAR 2092 3-phase currents THD % 2093 Ia THD % 2094 Ib THD % 2095 Ic THD % 2096 <	2072	Demand P kWa	kW
2075 Demand P kW3ph kW 2076 Demand P kVARa kVAR 2077 Demand P kVARb kVAR 2078 Demand P kVARc kVAR 2079 Demand P kVAR3ph kVAR 2080 Max. I Ia A 2081 Max. I Ib A 2082 Max. I Ic A 2083 Max. I In A 2084 Max. P1 kWa kW 2085 Max. P1 kWb kW 2086 Max. P1 kWc kW 2087 Max. P1 kWaRa kVAR 2088 Max. P1 kVARa kVAR 2089 Max. P1 kVARb kVAR 2090 Max. P1 kVAR3ph kVAR 2091 Max. P1 kVAR3ph kVAR 2092 3-phase currents THD % 2093 Ia THD % 2094 Ib THD % 2095 Source side Va THD % 2096 Source side Vb THD % <t< td=""><td>2073</td><td>Demand P kWb</td><td>kW</td></t<>	2073	Demand P kWb	kW
2076 Demand P kVARa kVAR 2077 Demand P kVARb kVAR 2078 Demand P kVARc kVAR 2079 Demand P kVAR3ph kVAR 2080 Max. I Ia A 2081 Max. I Ib A 2082 Max. I Ic A 2083 Max. I In A 2084 Max. P1 kWa kW 2085 Max. P1 kWb kW 2086 Max. P1 kWc kW 2087 Max. P1 kW3ph kW 2088 Max. P1 kVARa kVAR 2089 Max. P1 kVARb kVAR 2090 Max. P1 kVARc kVAR 2091 Max. P1 kVAR3ph kVAR 2092 3-phase currents THD % 2093 Ia THD % 2094 Ib THD % 2095 Ic THD % 2096 Source side 3-phase voltages THD % 2099 Source side Vb THD % <	2074	Demand P kWc	kW
2077 Demand P kVARb kVAR 2078 Demand P kVARc kVAR 2079 Demand P kVAR3ph kVAR 2080 Max. I Ia A 2081 Max. I Ib A 2082 Max. I Ic A 2083 Max. I In A 2084 Max. P1 kWa kW 2085 Max. P1 kWb kW 2086 Max. P1 kWc kW 2087 Max. P1 kW3ph kW 2088 Max. P1 kVARa kVAR 2089 Max. P1 kVARc kVAR 2090 Max. P1 kVARc kVAR 2091 Max. P1 kVAR3ph kVAR 2091 Max. P1 kVAR3ph kVAR 2092 3-phase currents THD % 2093 Ia THD % 2094 Ib THD % 2095 Ic THD % 2096 Source side Va THD % 2099 Source side Vo THD % 2100	2075	Demand P kW3ph	kW
2078 Demand P kVARC kVAR 2079 Demand P kVAR3ph kVAR 2080 Max. I Ia A 2081 Max. I Ib A 2082 Max. I Ic A 2083 Max. I In A 2084 Max. P1 kWa kW 2085 Max. P1 kWb kW 2086 Max. P1 kWc kW 2087 Max. P1 kW3ph kW 2088 Max. P1 kVARa kVAR 2089 Max. P1 kVARa kVAR 2090 Max. P1 kVARb kVAR 2091 Max. P1 kVAR3ph kVAR 2091 Max. P1 kVAR3ph kVAR 2092 3-phase currents THD % 2093 Ia THD % 2094 Ib THD % 2095 Ic THD % 2096 Source side 3-phase voltages THD % 2097 Source side Vb THD % 2100 Load side Va THD % <	2076	Demand P kVARa	kVAR
2079 Demand P kVAR3ph kVAR 2080 Max. I Ia A 2081 Max. I Ib A 2082 Max. I Ic A 2083 Max. I In A 2084 Max. P1 kWa kW 2085 Max. P1 kWb kW 2086 Max. P1 kWc kW 2087 Max. P1 kW3ph kW 2088 Max. P1 kVARa kVAR 2089 Max. P1 kVARb kVAR 2090 Max. P1 kVARc kVAR 2091 Max. P1 kVAR3ph kVAR 2091 Max. P1 kVAR3ph kVAR 2092 3-phase currents THD % 2093 Ia THD % 2094 Ib THD % 2095 Ic THD % 2096 Source side 3-phase voltages THD % 2097 Source side Va THD % 2099 Source side Vc THD % 2100 Load side Va THD %	2077	Demand P kVARb	kVAR
2080 Max. I Ia A 2081 Max. I Ib A 2082 Max. I Ic A 2083 Max. I In A 2084 Max. P1 kWa kW 2085 Max. P1 kWb kW 2086 Max. P1 kWc kW 2087 Max. P1 kW3ph kW 2088 Max. P1 kVARa kVAR 2090 Max. P1 kVARb kVAR 2090 Max. P1 kVAR3ph kVAR 2091 Max. P1 kVAR3ph kVAR 2092 3-phase currents THD % 2093 Ia THD % 2094 Ib THD % 2095 Ic THD % 2096 Source side 3-phase voltages THD % 2097 Source side Va THD % 2099 Source side Vc THD % 2100 Load side 3-phase voltages THD % 2101 Load side Vb THD %	2078	Demand P kVARc	kVAR
2081 Max. I lb A 2082 Max. I lc A 2083 Max. I ln A 2084 Max. P1 kWa kW 2085 Max. P1 kWb kW 2086 Max. P1 kWc kW 2087 Max. P1 kW3ph kW 2088 Max. P1 kVARa kVAR 2089 Max. P1 kVARb kVAR 2090 Max. P1 kVARSph kVAR 2091 Max. P1 kVAR3ph kVAR 2092 3-phase currents THD % 2093 Ia THD % 2094 Ib THD % 2095 Ic THD % 2096 Source side 3-phase voltages THD % 2097 Source side Va THD % 2099 Source side Vc THD % 2100 Load side 3-phase voltages THD % 2101 Load side Vb THD %	2079	Demand P kVAR3ph	kVAR
2082 Max. I Ic A 2083 Max. I In A 2084 Max. P1 kWa kW 2085 Max. P1 kWb kW 2086 Max. P1 kWc kW 2087 Max. P1 kW3ph kW 2088 Max. P1 kVARa kVAR 2089 Max. P1 kVARb kVAR 2090 Max. P1 kVARc kVAR 2091 Max. P1 kVAR3ph kVAR 2092 3-phase currents THD % 2093 Ia THD % 2094 Ib THD % 2095 Ic THD % 2096 Source side 3-phase voltages THD % 2097 Source side Va THD % 2099 Source side Vc THD % 2100 Load side 3-phase voltages THD % 2101 Load side Vb THD % 2102 Load side Vb THD %	2080	Max. I la	A
2083 Max. P1 kWa kW 2084 Max. P1 kWb kW 2085 Max. P1 kWb kW 2086 Max. P1 kWc kW 2087 Max. P1 kW3ph kW 2088 Max. P1 kVARa kVAR 2099 Max. P1 kVARb kVAR 2090 Max. P1 kVARc kVAR 2091 Max. P1 kVAR3ph kVAR 2092 3-phase currents THD % 2093 Ia THD % 2094 Ib THD % 2095 Ic THD % 2096 Source side 3-phase voltages THD % 2097 Source side Va THD % 2099 Source side Vc THD % 2100 Load side 3-phase voltages THD % 2101 Load side Va THD % 2102 Load side Vb THD %	2081	Max. I lb	A
2084 Max. P1 kWa kW 2085 Max. P1 kWb kW 2086 Max. P1 kWc kW 2087 Max. P1 kW3ph kW 2088 Max. P1 kVARa kVAR 2089 Max. P1 kVARb kVAR 2090 Max. P1 kVARc kVAR 2091 Max. P1 kVAR3ph kVAR 2092 3-phase currents THD % 2093 Ia THD % 2094 Ib THD % 2095 Ic THD % 2096 Source side 3-phase voltages THD % 2097 Source side Va THD % 2098 Source side Vb THD % 2100 Load side 3-phase voltages THD % 2101 Load side Va THD % 2102 Load side Vb THD %	2082	Max. I Ic	A
2085 Max. P1 kWb kW 2086 Max. P1 kWc kW 2087 Max. P1 kW3ph kW 2088 Max. P1 kVARa kVAR 2089 Max. P1 kVARb kVAR 2090 Max. P1 kVARc kVAR 2091 Max. P1 kVAR3ph kVAR 2092 3-phase currents THD % 2093 Ia THD % 2094 Ib THD % 2095 Ic THD % 2096 Source side 3-phase voltages THD % 2097 Source side Va THD % 2098 Source side Vb THD % 2100 Load side 3-phase voltages THD % 2101 Load side Va THD % 2102 Load side Vb THD %	2083	Max. I In	A
2086 Max. P1 kWc kW 2087 Max. P1 kW3ph kW 2088 Max. P1 kVARa kVAR 2089 Max. P1 kVARb kVAR 2090 Max. P1 kVARc kVAR 2091 Max. P1 kVAR3ph kVAR 2092 3-phase currents THD % 2093 Ia THD % 2094 Ib THD % 2095 Ic THD % 2096 Source side 3-phase voltages THD % 2097 Source side Va THD % 2098 Source side Vb THD % 2100 Load side 3-phase voltages THD % 2101 Load side Va THD % 2102 Load side Vb THD %	2084	Max. P1 kWa	kW
2087 Max. P1 kW3ph kW 2088 Max. P1 kVARa kVAR 2089 Max. P1 kVARb kVAR 2090 Max. P1 kVARc kVAR 2091 Max. P1 kVAR3ph kVAR 2092 3-phase currents THD % 2093 Ia THD % 2094 Ib THD % 2095 Ic THD % 2096 Source side 3-phase voltages THD % 2097 Source side Va THD % 2098 Source side Vb THD % 2099 Source side Vc THD % 2100 Load side 3-phase voltages THD % 2101 Load side Vb THD % 2102 Load side Vb THD %	2085	Max. P1 kWb	kW
2088 Max. P1 kVARa kVAR 2089 Max. P1 kVARb kVAR 2090 Max. P1 kVARc kVAR 2091 Max. P1 kVAR3ph kVAR 2092 3-phase currents THD % 2093 Ia THD % 2094 Ib THD % 2095 Ic THD % 2096 Source side 3-phase voltages THD % 2097 Source side Va THD % 2098 Source side Vb THD % 2100 Load side 3-phase voltages THD % 2101 Load side Va THD % 2102 Load side Vb THD %	2086	Max. P1 kWc	kW
2089 Max. P1 kVARb kVAR 2090 Max. P1 kVARc kVAR 2091 Max. P1 kVAR3ph kVAR 2092 3-phase currents THD % 2093 Ia THD % 2094 Ib THD % 2095 Ic THD % 2096 Source side 3-phase voltages THD % 2097 Source side Va THD % 2098 Source side Vb THD % 2100 Load side 3-phase voltages THD % 2101 Load side Va THD % 2102 Load side Vb THD %	2087	Max. P1 kW3ph	kW
2090 Max. P1 kVARc kVAR 2091 Max. P1 kVAR3ph kVAR 2092 3-phase currents THD % 2093 Ia THD % 2094 Ib THD % 2095 Ic THD % 2096 Source side 3-phase voltages THD % 2097 Source side Va THD % 2098 Source side Vb THD % 2099 Source side Vc THD % 2100 Load side 3-phase voltages THD % 2101 Load side Va THD % 2102 Load side Vb THD %	2088	Max. P1 kVARa	kVAR
2091 Max. P1 kVAR3ph kVAR 2092 3-phase currents THD % 2093 Ia THD % 2094 Ib THD % 2095 Ic THD % 2096 Source side 3-phase voltages THD % 2097 Source side Va THD % 2098 Source side Vb THD % 2099 Source side Vc THD % 2100 Load side 3-phase voltages THD % 2101 Load side Va THD % 2102 Load side Vb THD %	2089	Max. P1 kVARb	kVAR
2092 3-phase currents THD % 2093 Ia THD % 2094 Ib THD % 2095 Ic THD % 2096 Source side 3-phase voltages THD % 2097 Source side Va THD % 2098 Source side Vb THD % 2099 Source side Vc THD % 2100 Load side 3-phase voltages THD % 2101 Load side Va THD % 2102 Load side Vb THD %	2090	Max. P1 kVARc	kVAR
2093 Ia THD % 2094 Ib THD % 2095 Ic THD % 2096 Source side 3-phase voltages THD % 2097 Source side Va THD % 2098 Source side Vb THD % 2099 Source side Vc THD % 2100 Load side 3-phase voltages THD % 2101 Load side Va THD % 2102 Load side Vb THD %	2091	Max. P1 kVAR3ph	kVAR
2094 Ib THD % 2095 Ic THD % 2096 Source side 3-phase voltages THD % 2097 Source side Va THD % 2098 Source side Vb THD % 2099 Source side Vc THD % 2100 Load side 3-phase voltages THD % 2101 Load side Va THD % 2102 Load side Vb THD %	2092	3-phase currents THD	%
2095 Ic THD % 2096 Source side 3-phase voltages THD % 2097 Source side Va THD % 2098 Source side Vb THD % 2099 Source side Vc THD % 2100 Load side 3-phase voltages THD % 2101 Load side Va THD % 2102 Load side Vb THD %	2093	la THD	%
2096 Source side 3-phase voltages THD % 2097 Source side Va THD % 2098 Source side Vb THD % 2099 Source side Vc THD % 2100 Load side 3-phase voltages THD % 2101 Load side Va THD % 2102 Load side Vb THD %	2094	Ib THD	%
2097 Source side Va THD % 2098 Source side Vb THD % 2099 Source side Vc THD % 2100 Load side 3-phase voltages THD % 2101 Load side Va THD % 2102 Load side Vb THD %	2095	Ic THD	%
2098 Source side Vb THD % 2099 Source side Vc THD % 2100 Load side 3-phase voltages THD % 2101 Load side Va THD % 2102 Load side Vb THD %	2096	Source side 3-phase voltages THD	%
2099 Source side Vc THD % 2100 Load side 3-phase voltages THD % 2101 Load side Va THD % 2102 Load side Vb THD %	2097	Source side Va THD	%
2100 Load side 3-phase voltages THD % 2101 Load side Va THD % 2102 Load side Vb THD %	2098	Source side Vb THD	%
2101 Load side Va THD % 2102 Load side Vb THD %	2099	Source side Vc THD	%
2102 Load side Vb THD %	2100	Load side 3-phase voltages THD	%
	2101	Load side Va THD	%
2103 Load side Vc THD %	2102	Load side Vb THD	%
	2103	Load side Vc THD	%

2104	Ia true RMS	A
2105	Ib true RMS	A
2106	Ic true RMS	Α
2107	Va true RMS	V
2108	Vb true RMS	V
2109	Vc true RMS	V
2110	Vr true RMS	V
2111	Vs true RMS	V
2112	Vt true RMS	V
2113	la 2 nd harmonic RMS	A
2114	lb 2 nd harmonic RMS	A
2115	Ic 2 nd harmonic RMS	A
2116	la 3 rd harmonic RMS	A
2117	Ib 3 rd harmonic RMS	A
2118	Ic 3 rd harmonic RMS	Α
2119	Ia 4 th harmonic RMS	A
2120	Ib 4 th harmonic RMS	A
2121	Ic 4 th harmonic RMS	A
2122	Ia 5 th harmonic RMS	A
2123	Ib 5 th harmonic RMS	Α
2124	Ic 5 th harmonic RMS	Α
2125	Ia 6 th harmonic RMS	A
2126	Ib 6 th harmonic RMS	A
2127	Ic 6 th harmonic RMS	Α
2128	la 7 th harmonic RMS	A
2129	Ib 7 th harmonic RMS	A
2130	Ic 7 th harmonic RMS	Α
2131	Ia 8 th harmonic RMS	A
2132	lb 8 th harmonic RMS	A
2133	Ic 8 th harmonic RMS	A
2134	Source side Va 2 nd harmonic RMS	V
2135	Source side Vb 2 nd harmonic RMS	V
2136	Source side Vc 2 nd harmonic RMS	V
2137	Source side Va 3 rd harmonic RMS	V
2138	Source side Vb 3 rd harmonic RMS	V
2139	Source side Vc 3 rd harmonic RMS	V
2140	Source side Va 4 th harmonic RMS	V

24.44	Course side V/h 4 th harrespie DMC	l v
2141	Source side Vb 4 th harmonic RMS	V
2142	Source side Vc 4 th harmonic RMS	V
2143	Source side Va 5 th harmonic RMS	V
2144	Source side Vb 5 th harmonic RMS	V
2145	Source side Vc 5 th harmonic RMS	V
2146	Source side Va 6 th harmonic RMS	V
2147	Source side Vb 6 th harmonic RMS	V
2148	Source side Vc 6 th harmonic RMS	V
2149	Source side Va 7 th harmonic RMS	V
2150	Source side Vb 7 th harmonic RMS	V
2151	Source side Vc 7 th harmonic RMS	V
2152	Source side Va 8 th harmonic RMS	V
2153	Source side Vb 8 th harmonic RMS	V
2154	Source side Vc 8 th harmonic RMS	V
2155	Load side Va 2 nd harmonic RMS	V
2156	Load side Vb 2 nd harmonic RMS	V
2157	Load side Vc 2 nd harmonic RMS	V
2158	Load side Va 3 rd harmonic RMS	V
2159	Load side Vb 3 rd harmonic RMS	V
2160	Load side Vc 3 rd harmonic RMS	V
2161	Load side Va 4 th harmonic RMS	V
2162	Load side Vb 4 th harmonic RMS	V
2163	Load side Vc 4 th harmonic RMS	V
2164	Load side Va 5 th harmonic RMS	V
2165	Load side Vb 5 th harmonic RMS	V
2166	Load side Vc 5 th harmonic RMS	V
2167	Load side Va 6 th harmonic RMS	V
2168	Load side Vb 6 th harmonic RMS	V
2169	Load side Vc 6 th harmonic RMS	V
2170	Load side Va 7 th harmonic RMS	V
2171	Load side Vb 7 th harmonic RMS	V
2172	Load side Vc 7 th harmonic RMS	V
2173	Load side Va 8 th harmonic RMS	V
2174	Load side Vb 8 th harmonic RMS	V
2175	Load side Vc 8 th harmonic RMS	V
2176	In THD	%
2177	In true RMS	А
	<u> </u>	

	, and , and	1.
2178	In 2 nd harmonic RMS	A
2179	In 3 rd harmonic RMS	A
2180	In 4 th harmonic RMS	Α
2181	In 5 th harmonic RMS	Α
2182	In 6 th harmonic RMS	A
2183	In 7 th harmonic RMS	Α
2184	In 8 th harmonic RMS	A
	M_IT_NA_1 points	
4000	Restart Count	
4001	Switch Trip (or Open) Count	
4002	All Faults Count	
4003	A-phase Fault Count	
4004	B-phase Fault Count	
4005	C-phase Fault Count	
4006	N-phase Fault Count	
4007	kWattHour-a Export	kWh
4008	kWattHour-b Export	kWh
4009	kWattHour-c Export	kWh
4010	kWattHour-3ph Export	kWh
4011	kVarHour-a Export	kVarh
4012	kVarHour-b Export	kVarh
4013	kVarHour-c Export	kVarh
4014	kVarHour-3ph Export	kVarh
4015	kWattHour-a Import	kWh
4016	kWattHour-b Import	kWh
4017	kWattHour-c Import	kWh
4018	kWattHour-3ph Import	kWh
4019	kVarHour-a Import	kVarh
4020	kVarHour-b Import	kVarh
4021	kVarHour-c Import	kVarh
4022	kVarHour-3ph Import	kVarh
C_SE_NB_1 point	ts (Current Setting : M_ME_NB_1 points)	
Setting Group1		
3000	Phase - Pickup Current	10~900A
3001	Phase Fast - TCC Type	1~58
3002	Phase Fast - Time Multiplier	0.10~2.00,step:0.01
3003	Phase Fast - Time Adder	0.00~1.00,step:0.01Sec
-	•	•

3004	Phase Fast - Min Response Time	0.00~1.00,step:0.01Sec
3005	Phase Fast - Reset Type	RDMT(0),RIDMT(1)
3006	Phase Fast - Reset Definite Time	0.00~100.00,step:0.01Sec
3007	Phase Delay - TCC Type	1~58
3008	Phase Delay - Time Multiplier	0.10~2.00,step:0.01
3009	Phase Delay - Time Adder	0.00~1.00,step:0.01Sec
3010	Phase Delay - Min Response Time	0.00~1.00,step:0.01Sec
3011	Phase Delay - Reset Type	RDMT(0),RIDMT(1)
3012	Phase Delay - Reset Definite Time	0.00~100.00,step:0.01Sec
3013	Phase Definite Time OC - Active	0(Off),1(On)
3014	Phase Definite Time OC - Pickup Current	50~10000A
3015	Phase Definite Time OC - Response Time	0.00~1.00,step:0.01Sec
3016	Phase High Current - Pickup	50~10000A
3017	Phase High Current - Response Time	0.00~1.00,step:0.01Sec
3018	Phase - Cold Load Pickup Multiplier	1.0~5.0,step:0.1
3019	Phase - Inrush Restraint	No(0),Yes(1)
3020	Ground - Pickup Current	5~900A
3021	Ground Fast - TCC Type	1~58
3022	Ground Fast - Time Multiplier	0.10~2.00,step:0.01
3023	Ground Fast - Time Adder	0.00~1.00,step:0.01Sec
3024	Ground Fast - Min Response Time	0.00~1.00,step:0.01Sec
3025	Ground Fast - Reset Type	RDMT(0),RIDMT(1)
3026	Ground Fast - Reset Definite Time	0.00~100.00,step:0.01Sec
3027	Ground Delay - TCC Type	1~58
3028	Ground Delay - Time Multiplier	0.10~2.00,step:0.01
3029	Ground Delay - Time Adder	0.00~1.00,step:0.01Sec
3030	Ground Delay - Min Response Time	0.00~1.00,step:0.01Sec
3031	Ground Delay - Reset Type	RDMT(0),RIDMT(1)
3032	Ground Delay - Reset Definite Time	0.00~100.00,step:0.01Sec
3033	Ground Definite Time OC - Active	0(Off),1(On)
3034	Ground Definite Time OC - Pickup Current	50~10000A
3035	Ground Definite Time OC - Response Time	0.00~1.00,step:0.01Sec
3036	Ground High Current - Pickup	50~10000A
3037	Ground High Current - Response Time	0.00~1.00,step:0.01Sec
3038	Ground - Cold Load Pickup Multiplier	1.0~5.0,step:0.1
3039	Ground - Inrush Restraint	No(0),Yes(1)
3040	SEF -Pickup Current(Io)	2 - 20A

3041	SEF -Pickup Voltage(Vo)	10~80%
3042	SEF -Max. Torque Angle	0~345,step:15 DEG
3043	SEF -Detection Time	0.1~30.0 step:0.1 Sec
3044	SEF -Inrush restraint	No(0),Yes(1)
3045	SEF -Operation Select	0(Off),Alarm(1),Trip(2)
3046	Inrush restraint - 2 nd harmonic Pickup	5~50%
3047	Inrush restraint - Detection Time	0.02~1.00,step:0.01
3048	Inrush restraint - Operation Select	0(Off),1(On)
3049	Operation to Lockout Phase	1~5 times
3050	Operation to Lockout Ground	1~5 times
3051	Operation Fast Curve Phase	0~5 times
3052	Operation Fast Curve Ground	0~5 times
3053	High Current Phase Active	0(OFF), 1~5 times
3054	High Current Ground Active	0(OFF), 1~5 times
3055	Reclose Interval 1 st	0.5~60.0,step:0.1Sec
3056	Reclose Interval 2 nd	1~60s
3057	Reclose Interval 3 rd	1~60s
3058	Reclose Interval 4 th	1~60s
3059	Reset Time	3~180s
3060	Cold Load Duration	0.00~60.00,step:0.01Sec
3061	Cold Load Pickup Restore Time	0.00~30.00,step:0.01Sec
3062	Sequence Coordination Active	No(0),Yes(1)
3063	Phase Loss - Volt On level	50~90,step:5%
3064	Phase Loss - Volt Off level	35~75,step:5%
3065	Phase Loss - Detection Time	0.1~30.0,step:0.1Sec
3066	Phase Loss - Operation Select	0(Off),1(On)
3067	Sync Fail - Phase difference	5~60DEG
3068	Sync Fail - Detection Time	0.1~30.0,step:0.1Sec
3069	Sync Fail - Operation Select	0(Off),1(On)
3070	Under Frequency - Frequency Pickup	47.00~59.98,step:0.01Hz
3071	Under Frequency - Detection Time	0.03~10.00,step:0.01Sec
3072	Under Frequency - Operation Select	0(Off),1(On)
Setting Group2		
3100	Phase - Pickup Current	10~900A
3101	Phase Fast - TCC Type	1~58
3102	Phase Fast - Time Multiplier	0.10~2.00,step:0.01
3103	Phase Fast - Time Adder	0.00~1.00,step:0.01Sec

3113	Phase Definite Time OC - Active	0(Off),1(On)
3111	Phase Delay - Reset Type Phase Delay - Reset Definite Time	RDMT(0),RIDMT(1) 0.00~100.00,step:0.01Sec
3113	Phase Definite Time OC - Active	0(Off),1(On)
3114	Phase Definite Time OC - Pickup Current	50~10000A
3115	Phase Definite Time OC - Response Time	0.00~1.00,step:0.01Sec
3116	Phase High Current - Pickup	50~10000A
3117	Phase High Current - Response Time	0.00~1.00,step:0.01Sec
3118	Phase - Cold Load Pickup Multiplier	1.0~5.0,step:0.1
3119	Phase - Inrush Restraint	No(0),Yes(1)
3120	Ground - Pickup Current	5~900A
3121	Ground Fast - TCC Type	1~58
3122	Ground Fast - Time Multiplier	0.10~2.00,step:0.01
3123	Ground Fast - Time Adder	0.00~1.00,step:0.01Sec
3124	Ground Fast - Min Response Time	0.00~1.00,step:0.01Sec
3125	Ground Fast - Reset Type	RDMT(0),RIDMT(1)
3126	Ground Fast - Reset Definite Time	0.00~100.00,step:0.01Sec
3127	Ground Delay - TCC Type	1~58
3128	Ground Delay - Time Multiplier	0.10~2.00,step:0.01
3129	Ground Delay - Time Adder	0.00~1.00,step:0.01Sec
3130	Ground Delay - Min Response Time	0.00~1.00,step:0.01Sec
3131	Ground Delay - Reset Type	RDMT(0),RIDMT(1)
3132	Ground Delay - Reset Definite Time	0.00~100.00,step:0.01Sec
3133	Ground Definite Time OC - Active	0(Off),1(On)
3134	Ground Definite Time OC - Pickup Current	50~10000A
3135	Ground Definite Time OC - Response Time	0.00~1.00,step:0.01Sec
3136	Ground High Current - Pickup	50~10000A
3137	Ground High Current - Response Time	0.00~1.00,step:0.01Sec
3138	Ground - Cold Load Pickup Multiplier	1.0~5.0,step:0.1
3139	Ground - Inrush Restraint	No(0),Yes(1)
<u> </u>	SEF -Pickup Current(Io)	2 - 20A

3202 3203	Phase Fast - Time Multiplier Phase Fast - Time Adder	0.10~2.00,step:0.01 0.00~1.00,step:0.01Sec
3201	Phase Fast - TCC Type	1~58
3200	Phase - Pickup Current	10~900A
Setting Group3		
3172	Under Frequency - Operation Select	0(Off),1(On)
3171	Under Frequency - Detection Time	0.03~10.00,step:0.01Sec
3170	Under Frequency - Frequency Pickup	47.00~59.98,step:0.01Hz
3169	Sync Fail - Operation Select	0(Off),1(On)
3168	Sync Fail - Detection Time	0.1~30.0,step:0.1Sec
3167	Sync Fail - Phase difference	5~60DEG
3166	Phase Loss - Operation Select	0(Off),1(On)
3165	Phase Loss - Detection Time	0.1~30.0,step:0.1Sec
3164	Phase Loss - Volt Off level	35~75,step:5%
3163	Phase Loss - Volt On level	50~90,step:5%
3162	Sequence Coordination Active	No(0),Yes(1)
3161	Cold Load Pickup Restore Time	0.00~30.00,step:0.01Sec
3160	Cold Load Duration	0.00~60.00,step:0.01Sec
3159	Reset Time	3~180s
3158	Reclose Interval 4 th	1~60s
3157	Reclose Interval 3 rd	1~60s
3156	Reclose Interval 2 nd	1~60s
3155	Reclose Interval 1 st	0.5~60.0,step:0.1Sec
3154	High Current Ground Active	0(OFF), 1~5 times
3153	High Current Phase Active	0(OFF), 1~5 times
3152	Operation Fast Curve Ground	0~5 times
3151	Operation Fast Curve Phase	0~5 times
3150	Operation to Lockout Ground	1~5 times
3149	Operation to Lockout Phase	1~5 times
3148	Inrush restraint - Operation Select	0(Off),1(On)
3147	Inrush restraint - Detection Time	0.02~1.00,step:0.01
3146	Inrush restraint - 2 nd harmonic Pickup	5~50%
3145	SEF -Operation Select	0(Off),Alarm(1),Trip(2)
3144	SEF -Inrush restraint	No(0),Yes(1)
3143	SEF -Detection Time	0.1~30.0 step:0.1 Sec
3142	SEF -Max. Torque Angle	0~345,step:15 DEG
3141	SEF -Pickup Voltage(Vo)	10~80%

3207	Phase Delay - TCC Type	1~58
3208	Phase Delay - Time Multiplier	0.10~2.00,step:0.01
3209	Phase Delay - Time Adder	0.00~1.00,step:0.01Sec
3210	Phase Delay - Min Response Time	0.00~1.00,step:0.01Sec
3211	Phase Delay - Reset Type	RDMT(0),RIDMT(1)
3212	Phase Delay - Reset Definite Time	0.00~100.00,step:0.01Sec
3213	Phase Definite Time OC - Active	0(Off),1(On)
3214	Phase Definite Time OC - Pickup Current	50~10000A
3215	Phase Definite Time OC - Response Time	0.00~1.00,step:0.01Sec
3216	Phase High Current - Pickup	50~10000A
3217	Phase High Current - Response Time	0.00~1.00,step:0.01Sec
3218	Phase - Cold Load Pickup Multiplier	1.0~5.0,step:0.1
3219	Phase - Inrush Restraint	No(0),Yes(1)
3220	Ground - Pickup Current	5~900A
3221	Ground Fast - TCC Type	1~58
3222	Ground Fast - Time Multiplier	0.10~2.00,step:0.01
3223	Ground Fast - Time Adder	0.00~1.00,step:0.01Sec
3224	Ground Fast - Min Response Time	0.00~1.00,step:0.01Sec
3225	Ground Fast - Reset Type	RDMT(0),RIDMT(1)
3226	Ground Fast - Reset Definite Time	0.00~100.00,step:0.01Sec
3227	Ground Delay - TCC Type	1~58
3228	Ground Delay - Time Multiplier	0.10~2.00,step:0.01
3229	Ground Delay - Time Adder	0.00~1.00,step:0.01Sec
3230	Ground Delay - Min Response Time	0.00~1.00,step:0.01Sec
3231	Ground Delay - Reset Type	RDMT(0),RIDMT(1)
3232	Ground Delay - Reset Definite Time	0.00~100.00,step:0.01Sec
3233	Ground Definite Time OC - Active	0(Off),1(On)
3234	Ground Definite Time OC - Pickup Current	50~10000A
3235	Ground Definite Time OC - Response Time	0.00~1.00,step:0.01Sec
3236	Ground High Current - Pickup	50~10000A
3237	Ground High Current - Response Time	0.00~1.00,step:0.01Sec
3238	Ground - Cold Load Pickup Multiplier	1.0~5.0,step:0.1
3239	Ground - Inrush Restraint	No(0),Yes(1)
3240	SEF -Pickup Current(Io)	2 - 20A

	T	
3241	SEF -Pickup Voltage(Vo)	10~80%
3242	SEF -Max. Torque Angle	0~345,step:15 DEG
3243	SEF -Detection Time	0.1~30.0 step:0.1 Sec
3244	SEF -Inrush restraint	No(0),Yes(1)
3245	SEF -Operation Select	0(Off),Alarm(1),Trip(2)
3246	Inrush restraint - 2 nd harmonic Pickup	5~50%
3247	Inrush restraint - Detection Time	0.02~1.00,step:0.01
3248	Inrush restraint - Operation Select	0(Off),1(On)
3249	Operation to Lockout Phase	1~5 times
3250	Operation to Lockout Ground	1~5 times
3251	Operation Fast Curve Phase	0~5 times
3252	Operation Fast Curve Ground	0~5 times
3253	High Current Phase Active	0(OFF), 1~5 times
3254	High Current Ground Active	0(OFF), 1~5 times
3255	Reclose Interval 1 st	0.5~60.0,step:0.1Sec
3256	Reclose Interval 2 nd	1~60s
3257	Reclose Interval 3 rd	1~60s
3258	Reclose Interval 4 th	1~60s
3259	Reset Time	3~180s
3260	Cold Load Duration	0.00~60.00,step:0.01Sec
3261	Cold Load Pickup Restore Time	0.00~30.00,step:0.01Sec
3262	Sequence Coordination Active	No(0),Yes(1)
3263	Phase Loss - Volt On level	50~90,step:5%
3264	Phase Loss - Volt Off level	35~75,step:5%
3265	Phase Loss - Detection Time	0.1~30.0,step:0.1Sec
3266	Phase Loss - Operation Select	0(Off),1(On)
3267	Sync Fail - Phase difference	5~60DEG
3268	Sync Fail - Detection Time	0.1~30.0,step:0.1Sec
3269	Sync Fail - Operation Select	0(Off),1(On)
3270	Under Frequency - Frequency Pickup	47.00~59.98,step:0.01Hz
3271	Under Frequency - Detection Time	0.03~10.00,step:0.01Sec
3272	Under Frequency - Operation Select	0(Off),1(On)
Setting Group4		
3300	Phase - Pickup Current	10~900A
3301	Phase Fast - TCC Type	1~58
3302	Phase Fast - Time Multiplier	0.10~2.00,step:0.01
3303	Phase Fast - Time Adder	0.00~1.00,step:0.01Sec
L	ı	

3305	Phase Fast - Reset Type	RDMT(0),RIDMT(1)
3306	Phase Fast - Reset Definite Time	0.00~100.00,step:0.01Sec
3307	Phase Delay - TCC Type	1~58
3308	Phase Delay - Time Multiplier	0.10~2.00,step:0.01
3309	Phase Delay - Time Adder	0.00~1.00,step:0.01Sec
3310	Phase Delay - Min Response Time	0.00~1.00,step:0.01Sec
3311	Phase Delay - Reset Type	RDMT(0),RIDMT(1)
3312	Phase Delay - Reset Definite Time	0.00~100.00,step:0.01Sec
3313	Phase Definite Time OC - Active	0(Off),1(On)
3314	Phase Definite Time OC - Pickup Current	50~10000A
3315	Phase Definite Time OC - Response Time	0.00~1.00,step:0.01Sec
3316	Phase High Current - Pickup	50~10000A
3317	Phase High Current - Response Time	0.00~1.00,step:0.01Sec
3318	Phase - Cold Load Pickup Multiplier	1.0~5.0,step:0.1
3319	Phase - Inrush Restraint	No(0),Yes(1)
3320	Ground - Pickup Current	5~900A
3321	Ground Fast - TCC Type	1~58
3322	Ground Fast - Time Multiplier	0.10~2.00,step:0.01
3323	Ground Fast - Time Adder	0.00~1.00,step:0.01Sec
3324	Ground Fast - Min Response Time	0.00~1.00,step:0.01Sec
3325	Ground Fast - Reset Type	RDMT(0),RIDMT(1)
3326	Ground Fast - Reset Definite Time	0.00~100.00,step:0.01Sec
3327	Ground Delay - TCC Type	1~58
3328	Ground Delay - Time Multiplier	0.10~2.00,step:0.01
3329	Ground Delay - Time Adder	0.00~1.00,step:0.01Sec
3330	Ground Delay - Min Response Time	0.00~1.00,step:0.01Sec
3331	Ground Delay - Reset Type	RDMT(0),RIDMT(1)
3332	Ground Delay - Reset Definite Time	0.00~100.00,step:0.01Sec
3333	Ground Definite Time OC - Active	0(Off),1(On)
3334	Ground Definite Time OC - Pickup Current	50~10000A
3335	Ground Definite Time OC - Response Time	0.00~1.00,step:0.01Sec
3336	Ground High Current - Pickup	50~10000A
3337	Ground High Current - Response Time	0.00~1.00,step:0.01Sec
3338	Ground - Cold Load Pickup Multiplier	1.0~5.0,step:0.1
3339	Ground - Inrush Restraint	No(0),Yes(1)
3340	SEF -Pickup Current(Io)	2 - 20A

3403	Reserved	
3402	Reserved	
3401	Reversed	
3400	Active setting group	1~4
Common Setting		
3372	Under Frequency - Operation Select	0(Off),1(On)
3371	Under Frequency - Detection Time	0.03~10.00,step:0.01Sec
3370	Under Frequency - Frequency Pickup	47.00~59.98,step:0.01Hz
3369	Sync Fail - Operation Select	0(Off),1(On)
3368	Sync Fail - Detection Time	0.1~30.0,step:0.1Sec
3367	Sync Fail - Phase difference	5~60DEG
3366	Phase Loss - Operation Select	0(Off),1(On)
3365	Phase Loss - Detection Time	0.1~30.0,step:0.1Sec
3364	Phase Loss - Volt Off level	35~75,step:5%
3363	Phase Loss - Volt On level	50~90,step:5%
3362	Sequence Coordination Active	No(0),Yes(1)
3361	Cold Load Pickup Restore Time	0.00~30.00,step:0.01Sec
3360	Cold Load Duration	0.00~60.00,step:0.01Sec
3359	Reset Time	3~180s
3358	Reclose Interval 4 th	1~60s
3357	Reclose Interval 3 rd	1~60s
3356	Reclose Interval 2 nd	1~60s
3355	Reclose Interval 1 st	0.5~60.0,step:0.1Sec
3354	High Current Ground Active	0(OFF), 1~5 times
3353	High Current Phase Active	0(OFF), 1~5 times
3352	Operation Fast Curve Ground	0~5 times
3351	Operation Fast Curve Phase	0~5 times
3350	Operation to Lockout Ground	1~5 times
3349	Operation to Lockout Phase	1~5 times
3348	Inrush restraint - Operation Select	0(Off),1(On)
3347	Inrush restraint - Detection Time	0.02~1.00,step:0.01
3346	Inrush restraint - 2 nd harmonic Pickup	5~50%
3345	SEF -Operation Select	0(Off),Alarm(1),Trip(2)
3344	SEF -Inrush restraint	No(0),Yes(1)
3343	SEF -Detection Time	0.1~30.0 step:0.1 Sec
3342	SEF -Max. Torque Angle	0~345,step:15 DEG
3341	SEF -Pickup Voltage(Vo)	10~80%

145 / 145 www.jinkwang.co.kr